
2008 IIUG2008 IIUG Conference

New trends in Java
Development for IDS
(JCC & pureQuery)

Satheesh Bandaram
IBM Corp.
Session Code: B18
Wednesday, April 30, 2008 • 04:40 p.m. – 05:40 p.m.

2

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Satheesh Bandaram
IBM Corp.

bandaram@us.ibm.com

Session B18
New Trends in Java
Development for IDS

3

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

What is JCC?
 Before IDS Cheetah release (11.10), IBM Informix JDBC driver
provided Java connectivity to IDS server

 This Java driver is IDS server specific
 Had limited integration and testing with other IM products and tools

 New IBM Data Server Driver for JDBC and SQLJ (JCC) provides
Java connectivity to all DB2 servers, IDS and Cloudscape

 IDS server support was added in Cheetah release
 Provides JDBC or SQLJ access to data
 Very compact and doesn’t need install

 Very small footprint, about 2.5 MB
 Provides pure-Java or Type 4 connectivity to IDS

 Provides both JDBC 3 and JDBC 4 drivers
 High Performance

 Request chaining for Type-4, sendDataAsIs, deferPrepares

4

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

IDS server supports both drivers!
 Now IDS server can work with both DRDA and SQLI clients
 DRDA support enables all common clients to work with IDS
 JCC, .Net, Ruby on Rails, PHP and Perl

DB2 JDBC
Application

DB2 ODBC
Application

Informix
JDBC

Application

Informix
ODBC

Application

DRDA

SQLI

DRDA

Informix Dynamic
Server

DB2
UDB

Common Java Client for ALL IM data servers - Java Common Client [JCC]
Development is priming the [JCC] driver for IDS CHEETAH release

We have most of the base data types, transactions, cursors, ANSI support, statements,
result sets, error handling, etc., completed.

A parallel development team working on VIPER 2 Line Items (many are applicable to IDS),
SDO/DAS, JDBC 4.0, etc.,

Common Web Admin will be based on JCC and will support IDS via this enablement

Convergence includes QA as well with enhancements made to common test buckets
JCCDEVTESTs, IDS JDBC QA, Regression and System test buckets

All new enhancements for all databases will be worked into JCC
Informix JDBC connection URLs, environment variables, data source will be
supported
Goal is to keep existing application impacts to a bare minimum. However,

Namespace will carry JCC namespace in order to distinguish between the drivers
JDBC specification implementation will ride on JCC semantics, unless there is a business need
to retain multiple implementations
**DRDA protocol also drives some of the semantics as opposed to SQLI implementation

Legacy Informix JDBC driver in maintenance and will be deprecated over time

5

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Value proposition of JCC/DRDA to IDS platform

 Single JDBC driver for ALL IM data servers
 Application compatibility and migration

 All new enhancements for all databases will be worked into JCC
 PureQuery technology needs JCC driver
 Data Server Web Services and openJPA exploit JCC more
 New Data Studio suite of tools will work better with IDS using this driver
 WebSphere suite of products works very closely with JCC. Many JCC

extensions created for WAS exploitation. High availability and performance
features integrated into WAS suite very tightly

 SAP and other vendors exploit JCC functionality to the fullest
 Many third party products and tools available for DRDA
 All JDBC development teams working together on same product

Common Java Client for ALL IM data servers - Java Common Client [JCC]
Development is priming the [JCC] driver for IDS CHEETAH release

We have most of the base data types, transactions, cursors, ANSI support, statements,
result sets, error handling, etc., completed.

A parallel development team working on VIPER 2 Line Items (many are applicable to IDS),
SDO/DAS, JDBC 4.0, etc.,

Common Web Admin will be based on JCC and will support IDS via this enablement

Convergence includes QA as well with enhancements made to common test buckets
JCCDEVTESTs, IDS JDBC QA, Regression and System test buckets

All new enhancements for all databases will be worked into JCC
Informix JDBC connection URLs, environment variables, data source will be
supported
Goal is to keep existing application impacts to a bare minimum. However,

Namespace will carry JCC namespace in order to distinguish between the drivers
JDBC specification implementation will ride on JCC semantics, unless there is a business need
to retain multiple implementations
**DRDA protocol also drives some of the semantics as opposed to SQLI implementation

Legacy Informix JDBC driver in maintenance and will be deprecated over time

6

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

IDS features in JCC that are not in Informix JDBC driver

 JDBC 4.0 support
 New major upgrade to JDBC specification that is part of JDK 1.6
 Enhanced Large Object APIs
 Set Client Info and other ease of use enhancements
 Exception handling improvements, Connection management

 Full Mach 11 support only available in JCC driver
 Work load management only exposed in JCC driver
 Automatic Client reroute that can route client requests to alternates

 Full support for planned and unplanned failover handling
 Superior tracing and debugging mechanisms
 Full support for progressive references
 This list is likely to grow, with time

Common Java Client for ALL IM data servers - Java Common Client [JCC]
Development is priming the [JCC] driver for IDS CHEETAH release

We have most of the base data types, transactions, cursors, ANSI support, statements,
result sets, error handling, etc., completed.

A parallel development team working on VIPER 2 Line Items (many are applicable to IDS),
SDO/DAS, JDBC 4.0, etc.,

Common Web Admin will be based on JCC and will support IDS via this enablement

Convergence includes QA as well with enhancements made to common test buckets
JCCDEVTESTs, IDS JDBC QA, Regression and System test buckets

All new enhancements for all databases will be worked into JCC
Informix JDBC connection URLs, environment variables, data source will be
supported
Goal is to keep existing application impacts to a bare minimum. However,

Namespace will carry JCC namespace in order to distinguish between the drivers
JDBC specification implementation will ride on JCC semantics, unless there is a business need
to retain multiple implementations
**DRDA protocol also drives some of the semantics as opposed to SQLI implementation

Legacy Informix JDBC driver in maintenance and will be deprecated over time

7

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Migration challenges

 Some migration differences are likely
 Name space differences need application changes

 IDS extensibility features not fully exposed in JCC
 Some IDS supported data type support missing

 Some Datablade underlying mechanisms not yet supported
 Informix environment variables not supported
 Serial8 and BIGINT support missing. To be added in Sept 08, in FP2
 A few references to DB2 in client APIs
 Easy to rename, but will cause migration problems to DB2 customers

 You can help define IDS customer pain points for development team
 This list is likely to reduce with time

Common Java Client for ALL IM data servers - Java Common Client [JCC]
Development is priming the [JCC] driver for IDS CHEETAH release

We have most of the base data types, transactions, cursors, ANSI support, statements,
result sets, error handling, etc., completed.

A parallel development team working on VIPER 2 Line Items (many are applicable to IDS),
SDO/DAS, JDBC 4.0, etc.,

Common Web Admin will be based on JCC and will support IDS via this enablement

Convergence includes QA as well with enhancements made to common test buckets
JCCDEVTESTs, IDS JDBC QA, Regression and System test buckets

All new enhancements for all databases will be worked into JCC
Informix JDBC connection URLs, environment variables, data source will be
supported
Goal is to keep existing application impacts to a bare minimum. However,

Namespace will carry JCC namespace in order to distinguish between the drivers
JDBC specification implementation will ride on JCC semantics, unless there is a business need
to retain multiple implementations
**DRDA protocol also drives some of the semantics as opposed to SQLI implementation

Legacy Informix JDBC driver in maintenance and will be deprecated over time

8

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Switching from IBM Informix driver to JCC driver

import java.sql.*;
public class TestInformixConnection
{
 public static void main (String[] args) throws
Exception
 {
 Connection conn1;
 String URL = "jdbc:informix-sqli:" +
 "//myhost:1242/test:INFORMIXSERVER=testserver";

 try {
 Class.forName
 ("com.informix.jdbc.IfxDriver").newInstance();
 }
 catch (Exception e) { // Handle exception }
 try {
 conn1 = DriverManager.getConnection (URL,
"testuser", "testpass");
 }
 catch (SQLException se) { // Handle exception }

 System.out.println(“Established connection");
 conn1.close();

 }
}

import java.sql.*;
public class TestJccConnection
{
 public static void main (String[] args) throws
Exception
 {
 Connection conn1;
 String URL = "jdbc:db2://myhost:1243/test:";

 // Load the JDBC driver ..
 try {
 Class.forName
 ("com.ibm.db2.jcc.DB2Driver").newInstance();
 }
 catch (Exception e) { // Handle Exception }

 try {
 conn1 = DriverManager.getConnection (URL,
"testuser", "testpass");
 }
 catch (SQLException se) { // Handle Exception }

 System.out.println(“Established connection");
 conn1.close();
 }
}

JDBC application using IBM Informix driver JDBC application using Data Server driver (JCC)

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

public class TestInformixConnection

{

 public static void main (String[] args) throws Exception

 {

 Connection conn1;

 String URL = "jdbc:informix-
sqli://myhost:1242/test:INFORMIXSERVER=testserver";

 // Load the JDBC driver ..

 try {

 Class.forName ("com.informix.jdbc.IfxDriver").newInstance ();

 }

 catch (Exception e) {

 System.out.println

9

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Mach 11: Connection Manager
Connection Manager

Primary

HDR Secondary

SDS node

 Clients have the option of connecting to the servers directly or via the
connection manager

 Clients connected via the connection manager will have the ability of
automatic connection rerouting in case of failures

 Only JCC driver provides full support for Mach 11

Q: Does this work within ER?
A: Yes

Q: What is the failover hierarchy if the CMSM is down? Would be a manual or auto
operation?
A: Alert and manual intervention.

Q: How does CMSM come back up if it fails?
A: Alert and manual startup. However, there can be multiple CMSM agents running
within a group configuration.

10

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Two JAR files of the Driver

6.0JDBC 4.0
and earlier

4.0+db2jcc4.jar

1.4JDBC 3.0
and earlier

3.50+db2jcc.jar

Minimum
level of Java

Level of
JDBC
support

Driver
version

JAR file

 Cheetah (11.10) IDS release was shipped with JCC 3.50. JCC 4.0 was
certified later with a PID release of IDS
 Cheetah 2 (11.50) IDS release would need JCC 3.52 and JCC 4.2 to fully
exploit Mach 11 and other IDS enablement features

11

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

JDBC 4: Service Provider Mechanism

 No need to load a driver using Class.forName method
 Class.forName("com.ibm.db2.jcc.DB2Driver");
 Connection c = DriverManager.getConnection(url, user, password);

 Auto-loading of a JDBC driver is through the service provider mechanism
 For-each loop support

 Easier to navigate through SQLException without coding
getNextException()

 SQLException implements Iterable<Throwable>
catch (SQLException sqle) {
 for (Throwable e : sqle)
 e.printStackTrace();
}

12

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

JDBC 4: SQLException Improvements

New SQLException hierarchy
 2 categories of SQLException, SQLNonTransientException,

SQLTransientException
 6 subclasses of SQLNonTransientException

 SQLDataException, SQLFeatureNotSupportedException,
SQLIntegrityConstraintViolationException,
SQLInvalidAuthorizationSpecException,
SQLNonTransientConnectionException,
SQLSyntaxErrorException

 3 subclasses of SQLTransientException
 SQLTimeoutException, SQLTransactionRollbackException,

SQLTransientConnectionException

13

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

JDBC 4: Wrapper Interface and isValid
 Vendor-specific resources may be wrapped in some environment, such

as in an application server
 Gain access to the vendor-specific resource in a standard way
 Most JDBC interfaces, such as Statement, ResultSet, and Connection,

now extend the Wrapper interface
if (s.isWrapperFor(DB2Statement.class)) {
 DB2Statement ds = s.unwrap(DB2Statement.class);
 ds.setDB2ClientProgramId("...");
}

 Validate whether a connection is still alive or not
 The connection pool manger may take advantage of this information

do {
 Connection c = ...; // get a connection from pool
 if (c.isValid(timeout)) return c;
} while (hasNextConnectionInPool)

14

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

JDBC 4: Connection Client Information

 Associate client-specific information with a connection
c.setClientInfo("ApplicationName", "fooApp");
c.setClientInfo("ClientUser", "fooUser");
c.setClientInfo("ClientHostname", "fooHose");

 Monitoring tools can display this information for pinpointing the
problematic connection
String app = c.getClientInfo("ApplicationName");
String user = c.getClientInfo("ClientUser");
String host = c.getClientInfo("ClientHostname");

 Retrieve a list of supported properties
DatabaseMetaData dm = c.getMetaData();
ResultSet rs = dm.getClientInfoProperties();
while (rs.next()) {
 // Process
}

15

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

JDBC 4: Statement Events and poolable hint

 Allow the statement pool manager to be notified of statement events
 The statement pool manager needs to implement

StatementEventListener and register itself on PooledConnection
PooledConnection pc = ...;
pc.addStatementEventListener(poolManager);

 The listener is notified of statement closing and statement error events
 The event contains the statement, its associated connection, and the

exception about to be thrown
 Give a hint to the statement pool manager about whether a statement

should be pooled or not
// in the application
s.setPoolable(true);

16

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

JDBC 4 support for IDS

 Several LOB handling improvements
 Ability to free LOBs ahead of transaction boundary
 Allow partial large object retrieval as a stream
 Allow large object setting without a length
 Enable creation of large objects through factory methods
 JCC also added support for length-less streaming

 New datatypes, SQLXML and ROWID. Not applicable to IDS
 SQLXML enables binary XML transport to servers
 Provides text, SAX, DOM or StAX streaming directly
 Adds national character data types

Common Java Client for ALL IM data servers - Java Common Client [JCC]
Development is priming the [JCC] driver for IDS CHEETAH release

We have most of the base data types, transactions, cursors, ANSI support, statements,
result sets, error handling, etc., completed.

A parallel development team working on VIPER 2 Line Items (many are applicable to IDS),
SDO/DAS, JDBC 4.0, etc.,

Common Web Admin will be based on JCC and will support IDS via this enablement

Convergence includes QA as well with enhancements made to common test buckets
JCCDEVTESTs, IDS JDBC QA, Regression and System test buckets

All new enhancements for all databases will be worked into JCC
Informix JDBC connection URLs, environment variables, data source will be
supported
Goal is to keep existing application impacts to a bare minimum. However,

Namespace will carry JCC namespace in order to distinguish between the drivers
JDBC specification implementation will ride on JCC semantics, unless there is a business need
to retain multiple implementations
**DRDA protocol also drives some of the semantics as opposed to SQLI implementation

Legacy Informix JDBC driver in maintenance and will be deprecated over time

17

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

IBM Data Studio pureQuery
- Reducing the cost of deploying and
managing data

18

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Java Data Access – many forms

DB

POJO with inline SQL
 JDBC, SQLJ

EJB application

Spectrum of choices EJB query lang

OR mapping layer

config
file
for
named
queries

Persistence Layer

Pro’s:
 Simplicity
 Easy to control SQL
 Good performance
 Good monitoring (SQLJ)
Con’s:
 Not tied to object model
 More work for app pgmr

Pro’s:
 Less work for app pgmr
 Access via OO business objects
Con’s:
 Complexity
 Less control over SQL issued
 Performance can suffer
 Very difficult to monitor
 or diagnose problems

POJO iBatis Hibernate EJB 3

19

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

What performance/diagnosis challenges?

EJB application

EJB query lang

OR mapping layer

config
file
for
named
queries

Persistence Layer

EJB Query Language:
 SELECT object(e) FROM Employee e
 WHERE e.dept=?1 AND e.salary>=?2

SQL issued to database:
 SELECT * FROM PROD.EMP
 WHERE DEPT=? AND SALARY>?

O
R

 m
apping,

Transform
 to S

Q
L

Query language is
a subset of SQL.

Doesn’t have all the
SQL features you

want.

App query syntax is different from SQL
query. How do you track problem SQL
queries back to the app that issued the
original query???

Often, app query is intercepted by persistence layer, and
the resulting SQL query looks nothing like the app query.
 -- Resulting query might perform badly.
 -- Changing app query might not result in a similar
 change in the SQL query…

In most cases, queries map to JDBC. No
ability to lock in access path at program
deployment. No ability to search catalog to
see which queries are issued by a given
program.

20

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Toughest issue for Web apps – Problem diagnosis and resolution

Web
Browser
Users Web

Server

Application
Server

DB2/IDS
Server

Business Logic

D
ata Access Logic

Persistence Layer

D
ata Server Java D

river

JDBC
Package

EJB Q
uery Language

pureQuery

21

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

pureQuery with IBM Runtime/Tooling

Application Server

Catalog data for SQL statements

Application
Meta data

DB2 or IDS

A1

A2

A5

A3

A6

A4

A1

A1

A6

A6

A2

A2

A3

A3

A4

A4

A5

A5

A1

A4

A5

App CPU
A1 2.1
A4 8.3
A5 22.0

Compile-time application details:
 - Java class/line number for SQL
 - Original query syntax
 - Final SQL query syntax

Performance data by application:
 - CPU and elapsed time
 - Getpages, locks, etc.

D
ata Access Logic

Persistence Layer

D
ata S

erver Java D
river

EJB Q
uery Language

pureQuery

-Omegaman
-pureQuery is trying to unify monitoring
-Capture and save monitoring data in a database so that everyone can get to it

22

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

pureQuery: Improved Java data access

Optimizing Java database development and
deployment
• Integrated tools, APIs, and runtime
• Flexible deployment options with Static SQL support
• Unified API to query databases and in-memory Java objects

with SQL

pureQuery is a high-performance Java data access
platform focused on simplifying the tasks of developing

and managing applications that access data.

The benefits of using pureQuery extend throughout the development, deployment,
management, and governance stages of the application life cycle.

pureQuery provides access to data in databases and in-memory Java objects via its tools, APIs,
and runtime environment.

Embraces SQL as the common query language

Improves the Java data access life cycle
Development, deployment, management, and governance stages
Key component of IBM’s end-to-end problem determination strategy

Before pureQuery
JDBC or SQLJ to access database

Tedious to develop, customize, maintain
Developer spends a lot of time on lower level data access instead of business logic

Technologies based on proprietary query languages
No visibility to the efficiency of the generated SQL
Problem determination difficult
Tied to single vendor
Not sophisticated enough to handle complex scenarios

Performance boost from Static SQL requires new skills
No simple integrated way to work with database and in-memory Java objects

With pureQuery you can use standard SQL to access data from databases or in-memory Java objects

23

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

pureQuery Architecture

Generate template
data access layer

Provides DBA with tools
to manage data access
layer

Encapsulate
data
access layer

Simplify direct SQL
access

Incorporate JDBC
best practices

Optimized Data Access
 Project Zero
 Spring
 pureQuery
 JPA

24

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Java On-Ramps to pureQuery

JPA API pureQuery API

JPA Runtime

pureQuery Runtime

JCC JDBC w/ pureQuery

Database pureQuery
Metadata,

Manageability

SpringiBatisJDBC
SQLJ

High Speed API

Profile Existing
programs

J2EE Managed
Objects

Non-Managed
Objects

Open Source
programs

25

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Java Data API Space

J2EE,
Managed Objects

Web 2.0,
Performanc

e XML,
JSON

EJB 2

JPA / EJB3

JDBC

pureQuery, Spring, iBatis

SQLJ

SQLJAlready using SQLJ

pureQueryAll other cases
•Development
speed
•Performance
•Web 2.0 / AJAX
•XML / JSON
•Dynamic & Static
SQL

JPA +
pureQuery

J2EE
Managed Objects
Complex O/R

Complex

Simple

26

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

JPA and pureQuery together

 EJBQL and runtime SQL generation based on
object manipulation make the value of
pureQuery even more important in the JPA
setting

 IBM is enhancing our JPA implementation with
both pureQuery APIs and pureQuery runtime
lifecycle benefits

 JPA w/pureQuery enables problem
determination, optimization, and governance
connecting the EJBQL and business logic to
the actual SQL and database operation

 JPA / EJB3 is a J2EE5 standard

 WebSphere is delivering JPA

 Apache openJPA is the only JPA
implementation supported by more than one
major vendor: BEA and IBM

JPA

pureQuery API

pureQuery Runtime

27

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

pureQuery profiling

pureQuery enables wide use of Static SQL

JDBC pureQuery SQLJ

Dynamic SQL Static SQL

 Static SQL
 Highest speed
 Greatest reliability

 JDBC is basic access, uses Dynamic SQL
 SQLJ adds Static SQL
 pureQuery supports both Static SQL and Dynamic SQL

 Code to dynamic SQL, turn on static SQL at deployment

Runtime
Control

Customize

28

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Retrieve a single row from Database

addr = db.queryFirst("SELECT ADDRESS FROM EMP
 WHERE NAME=?", String.class, name);
-or-
addr = getAddress(name);

#sql [con] { SELECT ADDRESS INTO :addr FROM EMP
 WHERE NAME=:name };

SQLJ:

JDBC:
java.sql.PreparedStatement ps = con.prepareStatement(
 "SELECT ADDRESS FROM EMP WHERE NAME=?");
ps.setString(1, name);
java.sql.ResultSet names = ps.executeQuery();
names.next();
addr = names.getString(1);
names.close();
ps.close();

pureQuery: Automatically Optimizes for 1 row

XML file or Java annotation
 SELECT ADDRESS FROM EMP
 WHERE NAME=:name;

Most SQL statements in SQLJ are a one-line Java expression. These one-
line expressions contain familar "host variable" syntax that makes it easy for
the programmer to issue SQL statements that reference Java variables.
JDBC is a much lower-level programming interface. The application
programmer has to use set and get methods to associate Java program
variables with SQL statements. A typical SQL SELECT statement can
easily take 50-100 lines of code using JDBC. The same SQL statement is a
one-line expressing in SQLJ.

29

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Developing with pureQuery: Flexible styles
 pureQuery support several programming styles
 Inline style – SQL in application

• Simplified and intelligent direct SQL access
 Method Style – Encapsulate SQL in Java interfaces

• Annotated Method Style
 Define SQL as Java annotations

• Named query style – extension of Annotated Method Style
 Define SQL in XML files. same format used by EJB 3.0 Java

Persistence Architecture (JPA)
 Results provided
 Java objects and collections
 JSON (Javascript Object Notation)
 XML

Support several API styles to fit well into all of the popular Java programming models/frameworks
Inline style (familiar JDBC and SQLJ approach)
Method style (similar to JDBC 4 ease of use enhancements). You define the interface and we
write the code for you. Trying to generate most efficient code. Mapping is done at code
generation
Named query style (similar to iBatis/JDO/Hibernate/JPA)

30

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Questions/Comments

? / !

