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The Problem
• Typical large databases contain thousands of tables
• Tables may be added and table schema may be changed on a

daily basis
• Applications require synchronization of hundreds of tables (or

views), whose schemas may also change frequently
• Mix of ANSI and Informix mode (as well as other databases and

3rd party service providers) prevents direct inter-database
transactions

We need a self-adapting system with minimal human intervention
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Solution: JDBC Query Metadata
• JDBC has a well defined interface for analyzing

SQL output: ResultSetMetaData
• Classes that implement this interface provide

access to the details of the various fields that are
returned as output to a query (the ResultSet)
• The actual classes usually depend on the JDBC

driver
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ResultSetMetaData Basic Methods

• getColumnCount() – returns number of columns
• getColumnType(col #) – returns JDBC type code
• getColumnTypeName(col #) – returns type name
• getColumnName(col #) – returns name of column
• isNullable(col #) – can the column accept NULL?
• getColumnDisplaySize(col #) – size of column
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Running Example
CREATE TABLE tab1 (

   col1 INT8 NOT NULL,

   col2 INT,

   col3 VARCHAR(40),

   col4 DECIMAL(10,2)

);

CREATE UNIQUE INDEX i1 ON tab1(col1);

CREATE INDEX i2 ON tab1(col2,col3);
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ResultSetMetaData Example I
JDBC Query Code:

Connection con = …;

Statement st = con.createStatement();

ResultSet rs = st.executeQuery(

“SELECT *,col1*col2 AS ex1, col1+1 FROM tab1“);

ResultSetMetaData md = rs.getMetaData();
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ResultSetMetaData Example II
Some values from the MetaData returned:
• md.getColumnCount()  5

• md.getColumnName(1)  col1

• md.getColumnName(5)  ex1

• md.getColumnName(6)  (expression)

• md.getColumnType(2)  4  java.sql.Types.INTEGER
• md.getColumnType(3)  12 java.sql.Types.VARCHAR
• md.getColumnDisplaySize(3)  40

• md.getColumnType(4)  3 java.sql.Types.DECIMAL
• md.getPrecision(4)  10

• md.getScale(4)  2
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Using MetaData Example I
Goal:
• Generate an SQL statement that returns all identical rows in a

table
Solution:
• loop on the metadata to generate this output:
SELECT UNIQUE a.*

FROM tab1 a, tab1 b

WHERE a.col1=b.col1 AND a.col2=b.col2 AND
a.col3=b.col3 AND a.col4=b.col4 AND
a.rowid<>b.rowid

(Assuming non-fragmented table)
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Using MetaData Example II
This is the code that generates the SQL:

     ResultSet rs = st.executeQuery(“SELECT * FROM “+tab);
    ResultSetMetaData md = rs.getMetaData();
    String sql = “SELECT UNIQUE a.* “+

“FROM “+tab+“ a, “+tab+“ b “+“WHERE “;
    for (int i=1;i<=md.getColumnCount();i++) {

      String c = md.getColumnName(i);
      sql += (c+“<>“+c+“ AND “);

    }
    sql += “a.rowid<>b.rowid“;

Column counts starts at 1, just to annoy us.



10

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Prepared Statements
• Using the knowledge of the tables, one can also

automate the creation of prepared SQL statements
• Using prepared statements saves significant time

vs. creating and parsing a new statement for every
record

• It also protects from “SQL-Injection”
• The statements will use order-based variables

• Some JDBC drivers (such as the new Informix
driver) support call-by-name variables, which are
not very useful for this type of automation

Prepared statements also eliminate “SQL Injection Hack”, but that is not
relevant for this presentation.
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Handling Data Values
• Since we are receiving

data values of varying
data types, we need to
check the returned type
and handle each value
accordingly.

• Here is a code snippet
that handles that:

import java.sql.Types;
type = md.getColumnType(i);

if  (type == CHAR || type == VARCHAR
||

   type == LONGVARCHAR) {
… rs.getString(i);

} else if (type == DECIMAL){
… rs.getBigDecimal(i);

} else if (type == DATE) {
… rs.getDate(i);

} else if (type == TIME) {
… rs.getTime(i);

} else if (type == TIMESTAMP){
… rs.getTimestamp(i);

} else if (type == BOOLEAN){
… rs.getBoolean(i);

}And so on… or so it seems. But it is not that easy…
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Primitive Data Types and NULLS
• While Java handles NULL values for objects (such

as strings and Decimals) nicely, it fails to do so for
primitive data types (such as int, int8 and double)

• There is a wasNull() method, to find if last value
used was null (as well as setNull() to set null
values), but these are cumbersome to use.

• In particular, wasNull() only applies to last read
parameter – not to a column number (or name)
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Primitive Data Types and NULLS
• So in order to do

primitive values, one
needs a piece of code
that resembles this:

• To make things easier,
one needs many
convenience methods
for this type of work.

type = md.getColumnType(j);

if (type==java.sql.Types.INTEGER){
int i = s.getInt(j);

if (s.wasNull()) {

// value was null

…

} else {

// i is a valid value

… i …

}

}
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Informix-Specific Types and Mapping
• The are some data types, which are platform-specific.

Informix, for example, has SETs, MULTISETs, ROWs,
SBLOBs and more.

• ROWs are mapped to java.sql.Struct
• SETs and MULTISETS are mapped to java.sql.Array

• Informix also optionally maps SETs to HashSet and
MULTISETs to TreeSet

• In order to get values, one may use these methods:
• generic getObject
• getString for String representation
• Informix-specific methods
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Informix SET Handling Code Sample
// read the set from the ResultSet object
HashSet hs = (HashSet) rs.getObject(i);

// do something with the set values
for (Object o: hs) {

// o is an iterator for the set
}
// maybe add some new value(s) to the set
hs.add(…);

// attach the value into a prepared statement
writeStmt.setXXX(…);
writeStmt.setObject(i, hs);

// write (or update) the new record
writeStmt.execute();
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Database Information
• The information about the database and objects

within it (tables, procedures, etc.) are accessed via
DatabaseMetaData class

• Information includes SQL operations supported,
keywords, permissions, behaviors, system
functions supported and much more

• For Informix, catalog is the database names, while
the schema is user name.

• DatabaseMetaData.getCatalogs() will get a list
of all databases in an instance
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Getting Table Information
• Use the getTables() method to access the list

of tables
• One can choose table types, which also includes

system tables, views and synonyms (as well as
other non-Informix table types).

• One can specify a table name pattern
• getSuperTables() is used for hierarchal tables
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Identifying Primary (and Alt) Keys
• To find the primary key, use getPrimaryKeys()
• If a Primary key is not defined, look for unique indices, as

one can be an alternate key
• Sometimes a multi-column Primary key is not easy to

use – another reason to look for an alternate key
• Sometimes an alternate key will allow nulls. These are

not useful (unless there are no nulls present).
• If there is more than a single unique index, human

intervention is required to identify best key to use.
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The DBA’s Dilemma
• Java is easy to write, but slow due to having only TCP

connections between the Virtual Machine and DB and
requirements of the VM itself (memory & cpu).

• We could run a Java VM within the instance, but:
• Never use anything that isn’t fully tested

• Apps change constantly…and we have hundreds of them!
• Never use anything that can cause major problems

• Running arbitrary Java code in (or on) the server? Scary…
• Java in the server is several generations behind Sun

• No generics, for example
Remember: DBAs are Extremely Paranoid!
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Solution: Generate SPL
• SPL’s have been used since Online 4 – extremely reliable
• Limited in power and possibility to cause engine faults

• But they still do…unfortunately*.
• They are very efficient
• Run in the engine - very little data transfer is needed
• Since they are generated, there is no need to test each one

individually – only the generation procedure and samples

*we have an open PMR on this
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Performance: SPL vs. Java/JDBC
• Test Program 1 – the least possible work for Java

• generate and insert 40M records to tab1 (no reading data)
• commit every 800K records
• Java uses batch and PUT inserts for max efficiency

• Environment:
• Java 5: Sun Linux 64 bit
• Communications with IDS via sockets (loopback)
• IDS 11.1 FC2, 25GB memory, buffered logging
• Informix JDBC driver 3.0

• Results (Java vs. SPL):
• Indices enabled: 1653s vs. 1589
• Indices disabled (less server work):  960 vs. 996
• These may seem about the same, but Java utilizes two processors!
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Performance: SPL vs. Java/JDBC
• Test Program 1 – more work for Java

• select 10M records from an existing table to tab1 (with minor data
changes, all in the select statement and therefore in server)

• commit every 100K records
• Java uses batch and PUT inserts for max efficiency

• Environment:
• Java 5: Sun Linux 64 bit
• Communications with IDS via sockets (loopback)
• IDS 11.1 FC2, 25GB memory, buffered logging
• Informix JDBC driver 3.0

• Results (Java vs. SPL):
• Indices disabled (less server work):  260 vs. 231
• SPL is faster when data needs to be moved
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SPL Code Generation Procedure
• Run the SELECT to get the appropriate metadata
• Loop over the various fields returned, generating the field

lists and the various loop elements
• Examples of loop elements:

• DEFINE col1_var LIKE tab1.col1;
• Examples of lists:

• col1,col2,…
• col1=col1 AND col2=col2 AND …
• ?,?,?,?  (placeholders for PREPARE statements)

• Assemble the pieces (preferably in StringBuffer, but it
does not really matter performance-wise) and we get …
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Code Sample for Creating Lists and
Loop Elements
StringBuffer sp = new StringBuffer(10000);
boolean isNotFirst = false;
sp.append("CREATE PROCEDURE proc_"+tableName+"();\n");
sp.append("  DEFINE i INT;\n  DEFINE j INT;\n");
for (int i = 1;i <= md.getColumnCount();i++) {
   if (isNotFirst) {

   q1.append(",");
   q2.append(",");

   } else {
   isNotFirst = true;

   }
   q1.append(md.getColumnName(i));
   q2.append("?");

   sp.append("  DEFINE “);
   sp.append(md.getColumnName(i)+“ “);
   sp.append(md.getColumnTypeName(i)+";\n");
}
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Case Study: Synchronization with
External Email Service Provider
Requirements:
• Dozens of tables and views which need to be synchronized

with 3rd party via Web Services interface – which could
change on a whim

• As little human involvement as possible to reduce work and
possibility of errors

• Due to size of data sources, only transfer changes
• Since this is a 3rd party, we must prepare for any fault on

their side (usual paranoia…)
• Therefore must keep an image of their data sets
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Solution Architecture
Automatically create:
• Image and Temporary

change tables
• SPL code to identify

changes (new, update, del)
• SPL code to apply

changes to image
• Web services code to

create data structures on
3rd party and apply
changes to them

View

New

3rd Party System

Image

Updates

Deletes

Web Services

SPLSPLSPL
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Multithread Issues I
• Thread priority and scheduling

• A higher-priority thread may run and not let a lower-priority
thread run

• Just having many threads running simultaneously can hold up
the SQL operations

• This may cause a transaction to abort due to timeouts
• Locking Issues

• Java, as well as Informix, locks objects – another source for
deadlocks.

• These, however, will not be detected by the server.
• But, eventually, the database will timeout and abort the

transaction, which will clear the deadlock.
• And the application has to handle the failed transaction…
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Multithread Issues II
• Exceptions

• Original Java threads (Runnable) do not return
values or throw exceptions

• Therefore, SQL Exceptions need to be taken care of
in the thread itself, not the calling thread or main
application

• Java 5 added exception handler for threads, as well
as the  Callable interface, which remedies these
issues.
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Summary
• Java/JDBC, although effective for database applications,

suffers from communications latency and bandwidth (and
other performance issues)

• Running Java/JDBC inside the server introduces limitations
and performance issues, as well as unacceptable risks to
critical production systems (DBAs are always paranoid)

• Stored Procedures (written in Informix Stored Procedure
Language – SPLs) are efficient and (relatively) safe
• as long as no goto is used…(new Cheetah SPL feature)

• Java/JDBC may be used to generate SPLs to safely
alleviate performance issues
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