
2008 IIUG2008 IIUG                Conference

The use of Multi-threaded
Java, JDBC and On-the-fly
Java-Generated SPL code for
Automatic Application
Development

Zachi Klopman
Cambridge Interactive Development Corp.

Change Session Code
Day, April 0, 2008 • 00:00 a.m. – 00:00 a.m.



2

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

The Problem
• Typical large databases contain thousands of tables
• Tables may be added and table schema may be changed on a

daily basis
• Applications require synchronization of hundreds of tables (or

views), whose schemas may also change frequently
• Mix of ANSI and Informix mode (as well as other databases and

3rd party service providers) prevents direct inter-database
transactions

We need a self-adapting system with minimal human intervention



3

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Solution: JDBC Query Metadata
• JDBC has a well defined interface for analyzing

SQL output: ResultSetMetaData
• Classes that implement this interface provide

access to the details of the various fields that are
returned as output to a query (the ResultSet)
• The actual classes usually depend on the JDBC

driver



4

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

ResultSetMetaData Basic Methods

• getColumnCount() – returns number of columns
• getColumnType(col #) – returns JDBC type code
• getColumnTypeName(col #) – returns type name
• getColumnName(col #) – returns name of column
• isNullable(col #) – can the column accept NULL?
• getColumnDisplaySize(col #) – size of column



5

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Running Example
CREATE TABLE tab1 (

   col1 INT8 NOT NULL,

   col2 INT,

   col3 VARCHAR(40),

   col4 DECIMAL(10,2)

);

CREATE UNIQUE INDEX i1 ON tab1(col1);

CREATE INDEX i2 ON tab1(col2,col3);



6

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

ResultSetMetaData Example I
JDBC Query Code:

Connection con = …;

Statement st = con.createStatement();

ResultSet rs = st.executeQuery(

“SELECT *,col1*col2 AS ex1, col1+1 FROM tab1“);

ResultSetMetaData md = rs.getMetaData();



7

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

ResultSetMetaData Example II
Some values from the MetaData returned:
• md.getColumnCount()  5

• md.getColumnName(1)  col1

• md.getColumnName(5)  ex1

• md.getColumnName(6)  (expression)

• md.getColumnType(2)  4  java.sql.Types.INTEGER
• md.getColumnType(3)  12 java.sql.Types.VARCHAR
• md.getColumnDisplaySize(3)  40

• md.getColumnType(4)  3 java.sql.Types.DECIMAL
• md.getPrecision(4)  10

• md.getScale(4)  2



8

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Using MetaData Example I
Goal:
• Generate an SQL statement that returns all identical rows in a

table
Solution:
• loop on the metadata to generate this output:
SELECT UNIQUE a.*

FROM tab1 a, tab1 b

WHERE a.col1=b.col1 AND a.col2=b.col2 AND
a.col3=b.col3 AND a.col4=b.col4 AND
a.rowid<>b.rowid

(Assuming non-fragmented table)



9

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Using MetaData Example II
This is the code that generates the SQL:

     ResultSet rs = st.executeQuery(“SELECT * FROM “+tab);
    ResultSetMetaData md = rs.getMetaData();
    String sql = “SELECT UNIQUE a.* “+

“FROM “+tab+“ a, “+tab+“ b “+“WHERE “;
    for (int i=1;i<=md.getColumnCount();i++) {

      String c = md.getColumnName(i);
      sql += (c+“<>“+c+“ AND “);

    }
    sql += “a.rowid<>b.rowid“;

Column counts starts at 1, just to annoy us.



10

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Prepared Statements
• Using the knowledge of the tables, one can also

automate the creation of prepared SQL statements
• Using prepared statements saves significant time

vs. creating and parsing a new statement for every
record

• It also protects from “SQL-Injection”
• The statements will use order-based variables

• Some JDBC drivers (such as the new Informix
driver) support call-by-name variables, which are
not very useful for this type of automation

Prepared statements also eliminate “SQL Injection Hack”, but that is not
relevant for this presentation.



11

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Handling Data Values
• Since we are receiving

data values of varying
data types, we need to
check the returned type
and handle each value
accordingly.

• Here is a code snippet
that handles that:

import java.sql.Types;
type = md.getColumnType(i);

if  (type == CHAR || type == VARCHAR
||

   type == LONGVARCHAR) {
… rs.getString(i);

} else if (type == DECIMAL){
… rs.getBigDecimal(i);

} else if (type == DATE) {
… rs.getDate(i);

} else if (type == TIME) {
… rs.getTime(i);

} else if (type == TIMESTAMP){
… rs.getTimestamp(i);

} else if (type == BOOLEAN){
… rs.getBoolean(i);

}And so on… or so it seems. But it is not that easy…



12

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Primitive Data Types and NULLS
• While Java handles NULL values for objects (such

as strings and Decimals) nicely, it fails to do so for
primitive data types (such as int, int8 and double)

• There is a wasNull() method, to find if last value
used was null (as well as setNull() to set null
values), but these are cumbersome to use.

• In particular, wasNull() only applies to last read
parameter – not to a column number (or name)



13

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Primitive Data Types and NULLS
• So in order to do

primitive values, one
needs a piece of code
that resembles this:

• To make things easier,
one needs many
convenience methods
for this type of work.

type = md.getColumnType(j);

if (type==java.sql.Types.INTEGER){
int i = s.getInt(j);

if (s.wasNull()) {

// value was null

…

} else {

// i is a valid value

… i …

}

}



14

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Informix-Specific Types and Mapping
• The are some data types, which are platform-specific.

Informix, for example, has SETs, MULTISETs, ROWs,
SBLOBs and more.

• ROWs are mapped to java.sql.Struct
• SETs and MULTISETS are mapped to java.sql.Array

• Informix also optionally maps SETs to HashSet and
MULTISETs to TreeSet

• In order to get values, one may use these methods:
• generic getObject
• getString for String representation
• Informix-specific methods



15

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Informix SET Handling Code Sample
// read the set from the ResultSet object
HashSet hs = (HashSet) rs.getObject(i);

// do something with the set values
for (Object o: hs) {

// o is an iterator for the set
}
// maybe add some new value(s) to the set
hs.add(…);

// attach the value into a prepared statement
writeStmt.setXXX(…);
writeStmt.setObject(i, hs);

// write (or update) the new record
writeStmt.execute();



16

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Database Information
• The information about the database and objects

within it (tables, procedures, etc.) are accessed via
DatabaseMetaData class

• Information includes SQL operations supported,
keywords, permissions, behaviors, system
functions supported and much more

• For Informix, catalog is the database names, while
the schema is user name.

• DatabaseMetaData.getCatalogs() will get a list
of all databases in an instance



17

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Getting Table Information
• Use the getTables() method to access the list

of tables
• One can choose table types, which also includes

system tables, views and synonyms (as well as
other non-Informix table types).

• One can specify a table name pattern
• getSuperTables() is used for hierarchal tables



18

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Identifying Primary (and Alt) Keys
• To find the primary key, use getPrimaryKeys()
• If a Primary key is not defined, look for unique indices, as

one can be an alternate key
• Sometimes a multi-column Primary key is not easy to

use – another reason to look for an alternate key
• Sometimes an alternate key will allow nulls. These are

not useful (unless there are no nulls present).
• If there is more than a single unique index, human

intervention is required to identify best key to use.



19

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

The DBA’s Dilemma
• Java is easy to write, but slow due to having only TCP

connections between the Virtual Machine and DB and
requirements of the VM itself (memory & cpu).

• We could run a Java VM within the instance, but:
• Never use anything that isn’t fully tested

• Apps change constantly…and we have hundreds of them!
• Never use anything that can cause major problems

• Running arbitrary Java code in (or on) the server? Scary…
• Java in the server is several generations behind Sun

• No generics, for example
Remember: DBAs are Extremely Paranoid!



20

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Solution: Generate SPL
• SPL’s have been used since Online 4 – extremely reliable
• Limited in power and possibility to cause engine faults

• But they still do…unfortunately*.
• They are very efficient
• Run in the engine - very little data transfer is needed
• Since they are generated, there is no need to test each one

individually – only the generation procedure and samples

*we have an open PMR on this



21

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Performance: SPL vs. Java/JDBC
• Test Program 1 – the least possible work for Java

• generate and insert 40M records to tab1 (no reading data)
• commit every 800K records
• Java uses batch and PUT inserts for max efficiency

• Environment:
• Java 5: Sun Linux 64 bit
• Communications with IDS via sockets (loopback)
• IDS 11.1 FC2, 25GB memory, buffered logging
• Informix JDBC driver 3.0

• Results (Java vs. SPL):
• Indices enabled: 1653s vs. 1589
• Indices disabled (less server work):  960 vs. 996
• These may seem about the same, but Java utilizes two processors!



22

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Performance: SPL vs. Java/JDBC
• Test Program 1 – more work for Java

• select 10M records from an existing table to tab1 (with minor data
changes, all in the select statement and therefore in server)

• commit every 100K records
• Java uses batch and PUT inserts for max efficiency

• Environment:
• Java 5: Sun Linux 64 bit
• Communications with IDS via sockets (loopback)
• IDS 11.1 FC2, 25GB memory, buffered logging
• Informix JDBC driver 3.0

• Results (Java vs. SPL):
• Indices disabled (less server work):  260 vs. 231
• SPL is faster when data needs to be moved



23

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

SPL Code Generation Procedure
• Run the SELECT to get the appropriate metadata
• Loop over the various fields returned, generating the field

lists and the various loop elements
• Examples of loop elements:

• DEFINE col1_var LIKE tab1.col1;
• Examples of lists:

• col1,col2,…
• col1=col1 AND col2=col2 AND …
• ?,?,?,?  (placeholders for PREPARE statements)

• Assemble the pieces (preferably in StringBuffer, but it
does not really matter performance-wise) and we get …



24

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Code Sample for Creating Lists and
Loop Elements
StringBuffer sp = new StringBuffer(10000);
boolean isNotFirst = false;
sp.append("CREATE PROCEDURE proc_"+tableName+"();\n");
sp.append("  DEFINE i INT;\n  DEFINE j INT;\n");
for (int i = 1;i <= md.getColumnCount();i++) {
   if (isNotFirst) {

   q1.append(",");
   q2.append(",");

   } else {
   isNotFirst = true;

   }
   q1.append(md.getColumnName(i));
   q2.append("?");

   sp.append("  DEFINE “);
   sp.append(md.getColumnName(i)+“ “);
   sp.append(md.getColumnTypeName(i)+";\n");
}



25

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Case Study: Synchronization with
External Email Service Provider
Requirements:
• Dozens of tables and views which need to be synchronized

with 3rd party via Web Services interface – which could
change on a whim

• As little human involvement as possible to reduce work and
possibility of errors

• Due to size of data sources, only transfer changes
• Since this is a 3rd party, we must prepare for any fault on

their side (usual paranoia…)
• Therefore must keep an image of their data sets



26

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Solution Architecture
Automatically create:
• Image and Temporary

change tables
• SPL code to identify

changes (new, update, del)
• SPL code to apply

changes to image
• Web services code to

create data structures on
3rd party and apply
changes to them

View

New

3rd Party System

Image

Updates

Deletes

Web Services

SPLSPLSPL



27

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Multithread Issues I
• Thread priority and scheduling

• A higher-priority thread may run and not let a lower-priority
thread run

• Just having many threads running simultaneously can hold up
the SQL operations

• This may cause a transaction to abort due to timeouts
• Locking Issues

• Java, as well as Informix, locks objects – another source for
deadlocks.

• These, however, will not be detected by the server.
• But, eventually, the database will timeout and abort the

transaction, which will clear the deadlock.
• And the application has to handle the failed transaction…



28

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Multithread Issues II
• Exceptions

• Original Java threads (Runnable) do not return
values or throw exceptions

• Therefore, SQL Exceptions need to be taken care of
in the thread itself, not the calling thread or main
application

• Java 5 added exception handler for threads, as well
as the  Callable interface, which remedies these
issues.



29

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Summary
• Java/JDBC, although effective for database applications,

suffers from communications latency and bandwidth (and
other performance issues)

• Running Java/JDBC inside the server introduces limitations
and performance issues, as well as unacceptable risks to
critical production systems (DBAs are always paranoid)

• Stored Procedures (written in Informix Stored Procedure
Language – SPLs) are efficient and (relatively) safe
• as long as no goto is used…(new Cheetah SPL feature)

• Java/JDBC may be used to generate SPLs to safely
alleviate performance issues



30

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Zachi Klopman
Cambridge Interactive Development Corp.

zklopman@cidc.com

Session ####
Session Title


