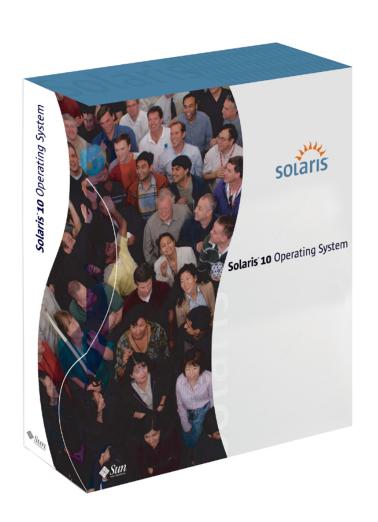


Harnessing the Power of Solaris IDS v11

Session Time:

Mon, 28 Apr, 3:30 PM


Location: Quail Creek I & II

Ravi Kota, Software Engineer Sun Microsystems, Inc

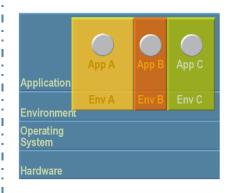
Solaris 10 (SPARC and IA-32/64)

04/17/08

Key Features

- Solaris Containers
- Secure Execution
- Dynamic Tracing (DTrace)
- Predictive Self-Healing
- OpenSolaris.org
 - > Open source/community
- ZFS

Virtualization capabilities with popped ditional Son, IBM, Dell,



Sun's Virtualization Technologies

Hard Partitions Virtual MachinesOS VirtualizatiorResource Managen

Multiple OS'Single OS

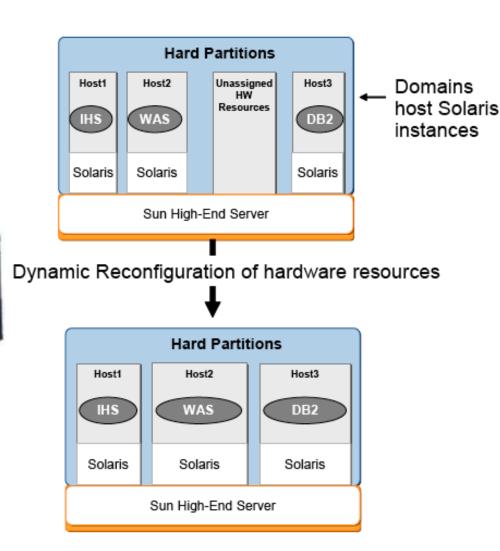
Trend to flexibility

Dynamic System Domains

Logical Domains
Sun xVM
VirtualBox
VMware

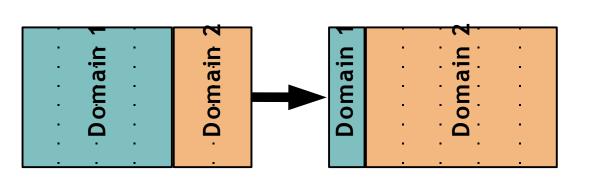
Trend to isolation

Solaris ContainersSolaris Resource Manager (SRM)


Solaris Containers for Linux Applications

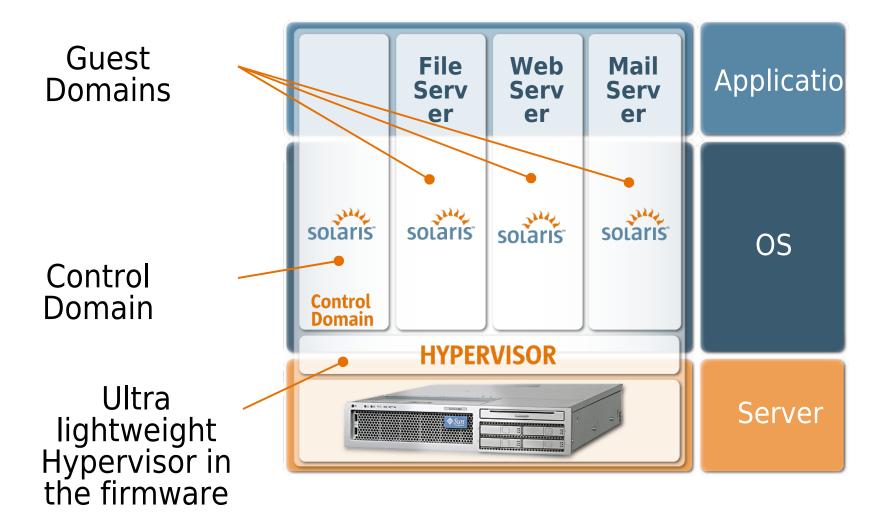
Solaris Trusted Extensions

Dynamic System Domains


- Mainframe capability
- Open technologies

Dynamic System Domains Hard Partition Technology

- Mid-range and high-end Sun servers support DSD
- First introduced on Sun Enterprise 10000 in 1997
- Ability to separate a pool of hardware resources into sections, electrically isolated from each other
 - Extreme high fault isolation
 - Flexibility to "move" hardware from one domain to another by simply entering a command



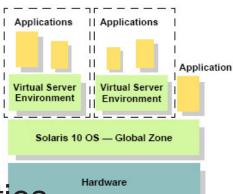
Dynamic System Domains Achieving Consolidation Goals

- Reduce Hardware
 - Two smaller systems can be combined into a larger, flexibly-sized domain, reducing hardware, OS, and mgmt costs
 - A system with a first-shift load can be combined with a second-shift system to reduce total resources needed, including floor space and reduce hardware support costs
- Maintain Service Levels
 - Service levels will increase through improved hardware redundancy
- Maintain Architectural Flexibility
 - > Flexibility will increase by using the dynamic features of DSD ||UG 04/28/2008

Logical Domains (LDoms)

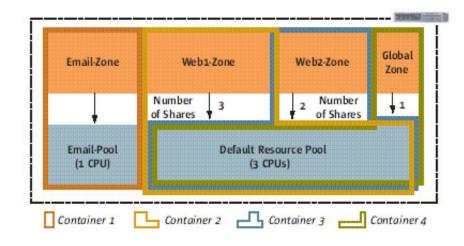
Logical Domains (LDoms)

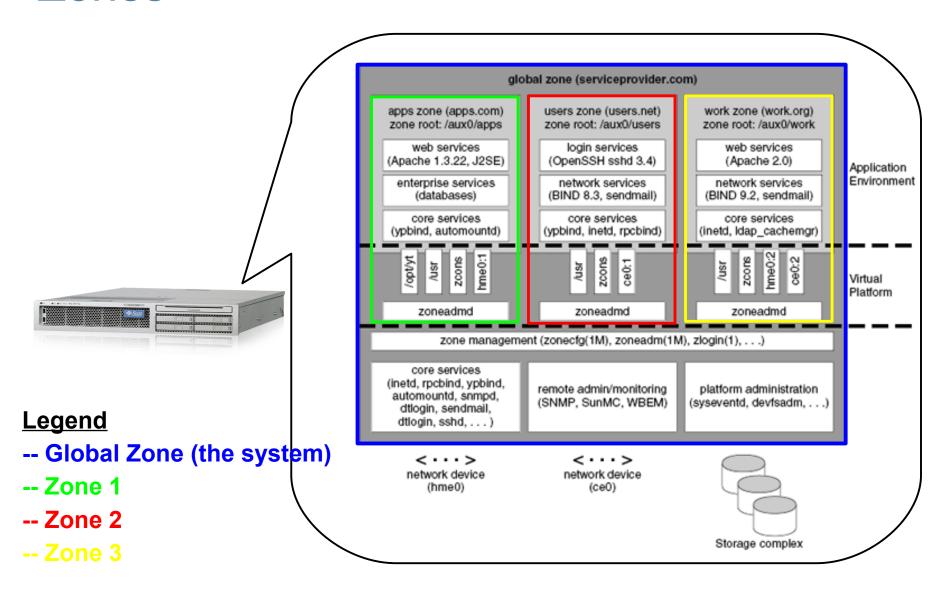
- Server Virtualization: Supported on UltraSPARC T1, T2 based systems and future CMT systems
 - > Sun Fire T5220, T5210, T1000, T2000, etc.
- Up to 64 LDoms per server today
 - > CPU thread individually assignable to different Ldoms
 - Partitioning of a physical system into multiple virtual machines
- Each virtual machine should appear as an entirely independent machine
 - > own OS instance, patches, tuning parameters
 - own user accounts, administrators
 - > own disks, network interfaces, MAC & IP addresses


Logical Domains (LDoms)

- Control/Service Domain and Guest Domains
 - Control Domain hardening
- Each guest domain can be configured, started and stopped independently
 - > Without requiring a power-cycle of machine
- Ability to dynamically add and remove vCPUs while OS is running
- Many benefits
 - > Greatly increased utilization
 - More flexibility in services deployment in data center

Solaris Containers


- Solaris Containers provide isolated and virtualized software application deployment (e.g. IDS v11 Application Environment)
 - > Available on all systems that run Solaris 10
- Solaris Containers consists of
 - > Zones
 - > Resource Management
 - > Dynamic Resource Pools
- Zones provide the virtualization capabilities
- Resource management allows partitioning of resource utilization


Solaris Containers

- Resource pools can be defined to manage workload among zones allowing several isolated IDS v11 environments on the same server
- Solaris 10 8/07 adds new capabilities to cap memory (physical/virtual), dedicate CPU's, choose FSS for zone configuration
- Solaris 8 Migration Assistant to host Solaris 8 Containers on Solaris 10

Zones

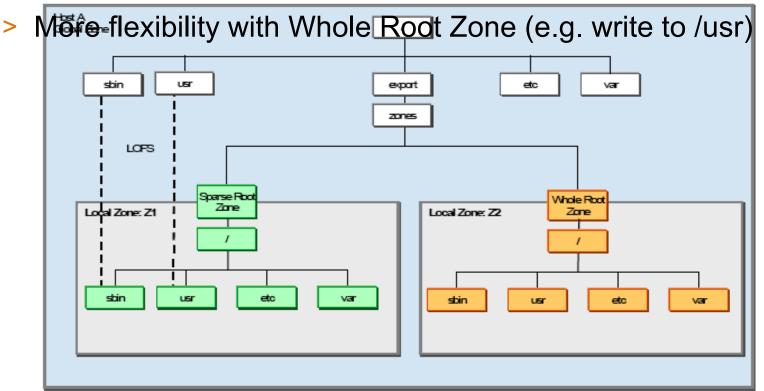
Zones

- Provides virtualized OS environments, each looking like a Solaris instance
 - > Implemented via a lightweight layer in the OS
 - > Details of physical resources are hidden
 - Separate host name, IP address, IP port space
 - Processes cannot see or affect processes in other containers
 - Each zone can be administered independently
 - No porting as the ABI/API is the same

Solaris 10 Operating Syste

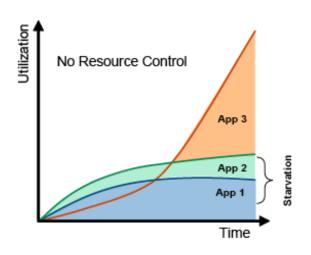
Zone's granularity

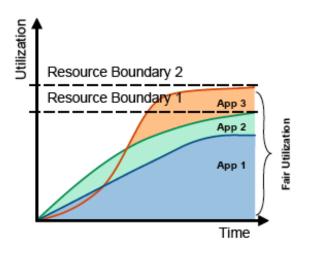
- 8,000+ zones per OS instance
 - > 140,000+ zones on an SF25K
- Does not require dedicated CPU's, memory, physical devices, etc.
 - > Just the disk space for unique root filesystem
- Existing hardware resources can be:
 - > multiplexed across containers, or
 - > allocated per container using resource pools


Zone's security

- Security boundary around each zone
- Restricted subset of privileges
 - A compromised container is unable to escalate its own privileges
- Important name spaces are isolated
- Processes running in a container are unable to affect activity in other containers or the global zone

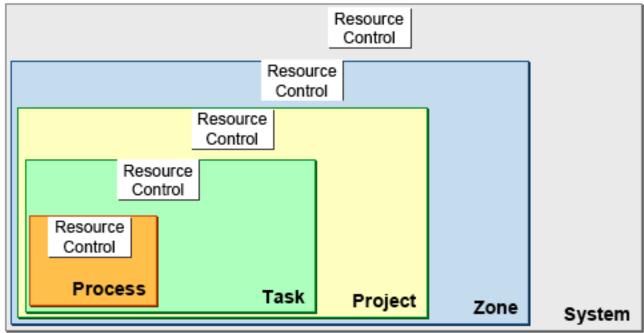
Two types of Zones


- Sparse Root Zone and Whole Root Zone
 - Loopback File System (LOFS) are pointers to system directories
 - Less space, quicker maintenance time with Sparse Root Zone



Resource Management

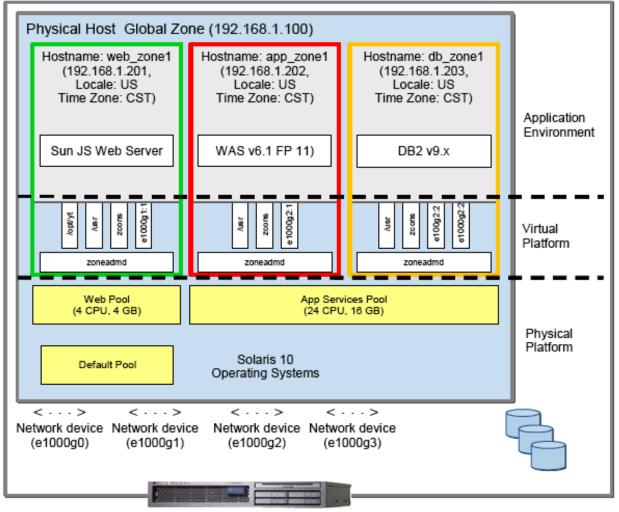
- Without Resource Management
 - A misbehaving application can hog the system
 - Causing resource starvation in other applications
- With Resource Management
 - Different resource management policies can be put in place
 - System utilization is more predictable (meeting SLA)
 - > Available for various scopes



Resource Management

- Scope of Resource Management in Solaris
 - > control resources upon the desired level

Processor Sets and Pools


- A resource partitioning mechanism in Solaris
- Assign a dedicated set of processors for a specific use
- Can dynamically reconfigure the processors from one set to another
- Solaris 10 8/07 has new zone configuration feature for dedicated processors

Project A 16.66% (1/6)	Project B 40% (2/5)	
Project B 33.33% (2/6)		
		Project C
Project C 50% (3/6)	Project C 60% (3/5)	100% (3/3)
Processor Set #1 2 CPUs	Processor Set #2 4 CPUs	Processor Set #3 2 CPUs
25% of the system	50% of the system	25% of the system

Solaris Containers with Resource Pools

Containers can have different resource pools

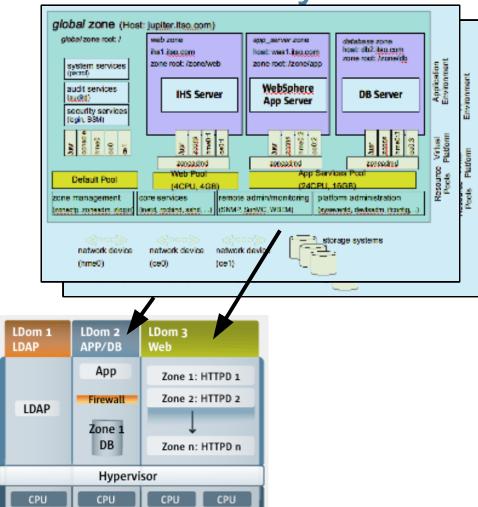
 An example to create a Solaris Container with a pool comprising a processor set with 2 "processors"

```
-- Enable resource pools
# pooladm -e
# pooladm -s
-- Create separate resource pools for each zone and save the configuration
# poolcfq -c 'create pset pset app zone1 (uint pset.min = 2; uint pset.max = 2)'
# poolcfg -c 'create pool pool app zone1'
# poolcfg -c 'associate pool pool app zone1 (pset pset app zone1)'
# zonecfg -z app-zone1
app-zonel: No such zone configured
Use 'create' to begin configuring a new zone.
zonecfg:app-zone1> create
zonecfg:app-zone1> set zonepath=/export/app-zone1
zonecfg:app-zone1> set autoboot=true
zonecfg:app-zone1> set pool=pool app zone1
zonecfg:app-zone1> add net
zonecfg:app-zonel:net> set physical=e1000g1
zonecfg:app-zone1:net> set address=129.110.14.21
zonecfg:app-zone1:net> end
zonecfg:app-zone1> verify
zonecfg:app-zone1> commit
zonecfg:app-zone1> exit
```


Example#2: Container (Zone+Resources)

 Another example to create a Solaris Container with a processor set with 2 "processors" as well as capped memory to 1GB physical and swap space using the Solaris 10 8/07 zone features

```
# zonecfg -z app-zone1
app-zonel: No such zone configured
Use 'create' to begin configuring a new zone.
zonecfg:app-zone1> create
zonecfg:app-zone1> set zonepath=/export/app-zone1
zonecfg:app-zone1> set autoboot=true
zonecfg:app-zone1>add dedicated-cpu
zonecfg:app-zone1:dedicated-cpu>set ncpus=2
zonecfg:app-zone1:dedicated-cpu>set importance=2
zonecfg:app-zone1:dedicated-cpu>end
zonecfg:yourzone> add capped-memory
zonecfg:yourzone:capped-memory> set physical=1g
zonecfg:yourzone:capped-memory> set swap=1g
zonecfg:yourzone:capped-memory> end
zonecfg:app-zone1> add net
zonecfg:app-zone1:net> set physical=e1000g1
zonecfg:app-zone1:net> set address=129.110.14.21
zonecfg:app-zone1:net> end
zonecfq:app-zone1> verify
zonecfg:app-zone1> commit
zonecfg:app-zone1> exit
```



Selecting the right Virtualization for your

business needs

Keeping Competitive edge

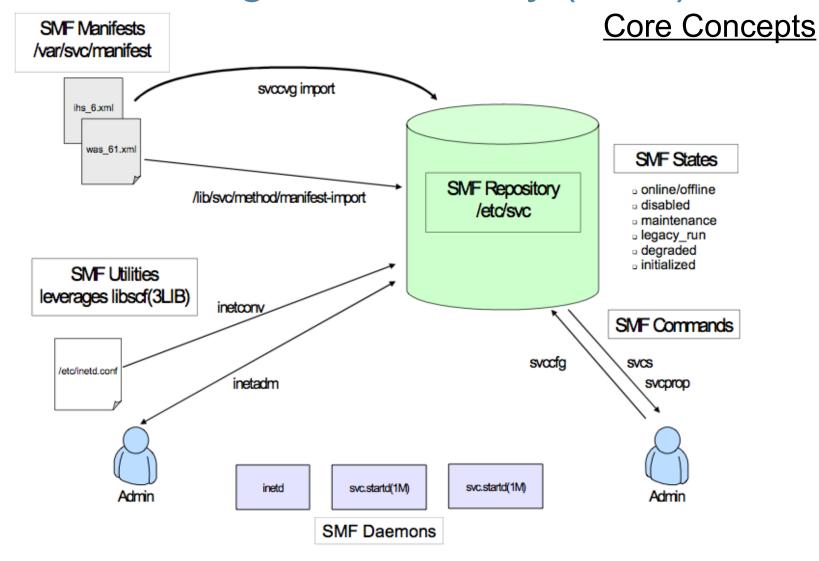
- Improve efficiency
- Better Manageability
- Reduce operating costs
- Increase ROI
- Faster time to market
- Enable aggressive growth

Mem

Hardware • Shared CPU • Memory • IO

Selecting the right Virtualization for your business needs

Require	Technology	Platform
 Vertical scalability Large physical memory (>64GB RAM) Complete fault isolation Dynamic reconfiguration Reliability, Availability, Serviceability (RAS) Multiple Solaris OS 	Dynamic System Domains (Hardware Partitioning)	Sun Fire mid-rage SPARC64-VI to high-end servers
 High throughput Best price per performance Energy efficienciency Multiple Solaris OS 	Logical Domains (Virtualization with Hypervisor)	Sun CoolThread servers (T5220, T5120, Sun Blade T6320, T2000, T1000, etc.)
 Virtual Systems Virtually no overhead Secure and isolated process environment even while sharing a single Solaris OS 	Solaris Containers (Virtualization at the OS-Level)	Any SPARC or x86/64 (from a single CPU system to Sun Fire 25K) that runs Solaris 10 or newer
 Solaris to host multiple guest operating systems including Solaris, Linux and Microsoft Windows 	Sun xVM (Virualization with a cross-platform, open source hypervisor)	(See http://www.sun.com/xv m) (*not Generally Available at this writing)


Built-in commo

feature

in Solaris 10

Service Management Facility (SMF)

Q & A

Thank You!

