
2008 IIUG2008 IIUG Conference

Engine Hangs,
Debugging Methods,
and Diagnostic Tools:
A Starters Guide

Ron Privett (Update of original material created by Jeff Laube)

IBM
Session D06
Monday, April 28 16:40-17:40

2

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Introduction
• This presentation aims to help DBA's determine how to deal

with critical errors and engine hangs within an IDS
environment. It will:
• Provide guidelines on collecting information after an

engine crash
• Show how to use data collected to isolate and/or

reproduce the problem
• Provide insight into various hangs, and how to accurately

define a hang
• Show examples of identifying the source of a hang,

collecting useful diagnostic information and potentially
alleviating a hung database

3

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Who is Ron Privett?
• Officially:

• Ron is a member of the Advanced Support team,
working with the Down Systems and Diagnostic group for
IBM Informix engine products. He has worked with IDS
for 11+ years, specializing in Replication issues a
majority of that time. He has created customer tutorials,
developed training materials, trained other engineers
how to support ER, and presented at various user
groups and user conferences in the past.

• Unofficially:
• Ron is: a father to 3 boys (13, 9, and 7), the husband to

a loving wife, a frustrated Do-It-Yourselfer, a huge U2
fan, and a Soccer fan.

4

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Agenda
• Assertion Failures

• Engine Hangs

• Miscellaneous Diagnostic Methods and Tools

5

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Assertion Failures
• Introduction
• Sample AF files
• Fault Isolation
• Shared Memory Dumps
• Goals in Interpreting AF files

6

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Assertion Failures
• On occasion, an internal problem within an IDS

server might present itself as an assertion failure.
An assertion failure message is reported in the
online.log and details the following:

• What type of failure has occurred
• Who is responsible for the failure
• When the failure occurred
• Where pertinent information was collected

7

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Sample 1: Assertion Failure Message

10:19:03 Assert Failed: No Exception Handler
10:19:03 Informix Dynamic Server Version 9.30.UC1
10:19:03 Who: Session(2, informix@, 0, 0)
 Thread(8, sm_poll, 0, 1)
 File: mtex.c Line: 415
10:19:03 Results: Exception Caught. Type: MT_EX_OS, Context: mem
10:19:03 Action: Please notify Informix Technical Support.
10:19:03 stack trace for pid 16467 written to /tmp/af.3f0af77
10:19:03 See Also: /tmp/af.3f0af77, shmem.3f0af77.0

The Default location of the AF file is the /tmp directory, however the location can be
changed by an ONCONFIG parameter called DUMPDIR.

In this case - the ‘Who done it’ is listed on the line:
10:19:03 Who: Session(2, informix@, 0, 0)

The session id (sid) is 2, and the username is informix. The thread id (tid) is 8, and
the thread name is sm_poll, an Internal Thread.

The default location of the AF file is the /tmp directory but the location can be
changed by an ONCONFIG parameter which is DUMPDIR.

08:23:18 Who: Session(2, informix@, 0, 0)
 | |

 SID User Name

 Thread(8, sm_poll, 0, 1)
 | |
 TID Name of Thread

The example in the slide shows an internal thread.

8

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Sample 2: Assertion Failure Message
09:13:04 Assert Failed: Memory block header corruption detected in

mt_shm_malloc_segid 7
09:13:04 Informix Dynamic Server Version 9.30.FC2
09:13:04 Who: Session(1599307, idsdb@panaka, 5581, 741958456)
 Thread(1718688, sqlexec, 12c3672e8, 1)
 File: mtshpool.c Line: 3206
09:13:04 Results: Unable to repair pool
09:13:04 Action: Please notify Informix Technical Support.
09:13:04 stack trace for pid 8 written to

/export/home/informix/log/af.3d885d0f
09:13:04 See Also: /export1/home/informix/log/af.3d885d0f,

shmem.3d885d0f.0

The example in the slide shows a user or SQL thread.

The example in the slide shows a user or SQL thread.

9

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Sample 3: Assertion Failure Message
08:42:26 Assert Failed:
08:42:26 Informix Dynamic Server Version 7.31.UD4W6
08:42:26 Who: Session(3862, infocel@sumcflo, 24276, 1342723064)

Thread(3972, srvinfx, 50073c80, 3)
File: rsnode.c Line: 2255

08:42:26 Results: Delete failed
08:42:26 Action: Run 'oncheck -cI caching_request_3'

This shows corruption on a table, and suggests
running oncheck to fix it.

10

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Multiple Assertion Failure Messages

• A DBA might notice many consecutive assertion
failure messages in the online.log

• Typically, direct primary focus to the initial or 1st

reported assertion failure message

• Subsequent assertion failures may be residual
effects of the problem first identified by the initial
assertion failure message

11

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Evidence Collection: evidence.sh
• The onconfig parameter SYSALARMPROGRAM defines the

location of the evidence.sh shell script

• Default template is provided at
$INFORMIXDIR/etc/evidence.sh

• The script is executed by the server at the point of an
assertion failure and is intended to provide insight, primarily
through onstat, into the particulars of the engine at the time
of failure

• A DBA may choose to add their own components to this file

12

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Evidence Collection: Fault Isolation

• AFWARN - action(s) taken on a warning
• AFFAIL - action(s) taken on a failure
• AFCRASH - action(s) taken on a crash

• Default values are:
• AFWARN = 0x00000001
• AFFAIL = 0x00000001
• AFCRASH = 0x00000201

13

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Evidence Collection: Fault Isolation
• Values can be combined to perform multiple actions. For

example, 0x203 would place a message in the message log,
generate a core dump, and crash the server. See following
slide for details on values

• All options will call SYSALARMPROGRAM, unless the flag
0x800 is included

• Another parameter AFLINES will limit the number of Assert
Failure messages written to the message log. Setting this to
0 allows all AF messages to be written to the log (the default
behavior), and setting it to -1 will not allow any AF
messages to be printed

14

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Evidence Collection: Values for AF*

0x800AFNOEVIDENCE: do not call evidence.sh
0x400AFSERVERSTACK: oninit generates a stack trace
0x200AFCRASHSERVER: Crash the server

0x100AFCHECKRELEASE: Hang thread if no critical resources are held, else return to
caller

0x80AFCHECKCRASH: Hang thread if no critical resources are held, else crash system
0x40AFCHECKHANG: Hang thread if no critical resources are held, else hang system
0x20AFHANGTHREAD: Hang just the thread causing error, not the system

0x10AFHANGSERVER: Hang server like AFDEBUG, without respecting
BLOCKTIMEOUT

0x8AFDUMPSHMEM: Generates a shared memory dump
0x4AFGCORE: Generates a gcore
0x2AFCORE: Generates a core file
0x1AFMESSAGE: Display message in the online.log

ValueAction/Effect

15

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Evidence Collection: Check your settings

• Static Setup
• Set in onconfig file, then bounce engine
• Permanently set (meaning a bounce will not

reset it)
• Dynamic Setting

• onparams -m {af config param} {new value}
• Temporarily set until next bounce

• Viewing Settings
• onstat -g ras

16

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Evidence Collection: AF files
• Output of an assertion failure is written to an

Assertion Failure file, or AF file
• The AF file’s location is determined by the onconfig

parameter DUMPDIR
• Contents of this file include:

• The original assertion failure message written to
the online.log

• Additional debugging data like hex dumps of
associated memory

• Output of the evidence.sh script

17

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Evidence Collection: Shared Memory Dumps

• A shared memory dump is
essentially a file whose
contents include all resident,
virtual, and communications
memory segments used by
the server at the point of
failure

• Shared memory dumps are
written to DUMPDIR

• Enabled by setting the
onconfig parameter,
DUMPSHMEM to 1, disabled
by setting DUMPSHMEM to 0

Ensure DUMPDIR is large enough to hold the complete shared memory
dump. You can check the size of Shared Memory using the ‘onstat -’
command.

18

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Evidence Collection: Shared Memory Dumps

• Shared memory dumps can be an invaluable source of
information about an engine failure for a technical support
engineer

• Onstat commands can be run against the shared memory
dump to gather information that may not have been included
in the AF file

• Shared memory dumps allow technical support engineers to
examine key control structures of individual threads or for
the instance as a whole

• Often, the analysis of a shared memory dump can lead to
the identification of a known bug or even uncover a
previously unidentified problem in the engine

19

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Evidence Collection: Shared Memory Dumps

To run onstat against a shared memory dump file:
Usage: onstat {infile} {options}

Note: Running onstats against a shared memory file
using the {infile} option causes the file to the
loaded into memory each time. Depending on the
size of the file, and your systems resources - this
could take a long time. To avoid this - you could
use the 'onstat {infile} -i' so that this file would only
be loaded once, run as many commands as
needed, then exit

20

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Interpreting the AF Message
• The assertion failure message provides a thread’s

session id and thread id
• A key component of the AF File (returned by the

default evidence.sh file) is the onstat -g sql for the
session that failed

• If the AF File does not include the onstat -g sql
output for this session and a shared memory dump
was taken, you may get it here by running:
onstat -g sql <session_num> <shmdump_name>

21

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Interpreting the AF Message
The following was pulled from AF File

Sample 2:
> onstat -g sql 1599307:

Informix Dynamic Server Version 9.30.FC2 -- On-Line -- Up 13 days 16:56:45 --
1178624 Kbytes

Sess SQL Current Iso Lock SQL ISAM F.E.
Id Stmt type Database Lvl Mode ERR ERR Vers
1599307 SELECT tsmc_prod CR Wait 360 0 0 9.03

Current SQL statement :
 SELECT COUNT(*) FROM update_stats WHERE error_code IS NULL and flag = 2

Last parsed SQL statement :
 SELECT COUNT(*) FROM update_stats WHERE error_code IS NULL and flag = 2

22

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Interpreting the AF Message: Goals
• Why do we want the SQL statement for the failed session?

• Can you run the statement again, does it reproduce?
• If failure reproduces, can a test case be created independent of the

production environment?
• A test case is arguably the single most important item you could

provide to a technical support engineer
• A test case

• can be used to verify relevance to known problems?
• provides a means of debugging an unidentified issue

• Identifying an offensive SQL statement is also important in that the
statement could be avoided until the problem is addressed

23

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Interpreting the AF Message: Goals
• What if the SQL statement does not reproduce the problem?

• The default evidence.sh script will attempt to obtain the stack
trace of the thread that caused the failure via ‘onstat -g stk’

• It is not uncommon for known bugs to be attributed to a given
failure simply by noting similarities in the reported stack traces

• Shared memory dump analysis by a technical support
engineer may be necessary

• It may also be necessary to incorporate other diagnostic
methods (to be discussed later), enabling us to gather more
helpful information in the event of a subsequent failure

24

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Hangs
• Define the hang
• Network/Connectivity

hangs
• Network threads
• Resource hangs
• Evidence Collection

25

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Define the Hang
• Questions to consider…

• Are only new sessions hung or prevented from
connecting to the server?

• Are all existing sessions still running or are no
threads running at all?

• Is just an individual session hung or not
returning after the execution of its last SQL
statement?

26

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Network or Connectivity related hangs

• Consider the following:
• the current protocol (TCP, shared memory,

streams)
• the current INFORMIXSERVER and

DBSERVERALIASES settings
• Is the problem specific to just one protocol?

Are shared memory connections fine, but TCP
connections hung?

• Do other server names using the same protocol
experience the same problem?

27

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Listen threads and Poll threads
• The Listen thread

• Responsible for accepting new connections and
starting a corresponding session for this new
connection

• The Poll thread
• monitors for incoming events
• tells the listen thread when new connection

requests have arrived
• notifies existing connections when new

messages arrive

28

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Networking thread names

sm_listensm_pollShared Memory

ipcstrlstipcstrpollStreams

soctcplstsoctcppollSockets

tlitcplsttlitcppollTLI

Listen ThreadPoll ThreadProtocol

29

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Typical networking thread states
• Consider this onstat -g ath output:
Threads:
 tid tcb rstcb prty status vp-class name
 9 b338d70 0 2 running 9tli tlitcppoll
 12 b37a698 0 3 sleeping forever 1cpu tlitcplst
 13 b308300 0 3 sleeping forever 3cpu tlitcplst

• This output represents typical states for these threads
• Poll threads are generally running
• Listen threads are commonly found sleeping forever
• Poll threads are constantly checking for incoming events. It will

wake the listen thread if a new connection indication has arrived
• If a hang has been reported and one or all of these threads are

consistently in some other state, this may be an outward indication
of the problem

30

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Resource hangs
• When a hang is not related to connectivity, it is

most likely waiting on a resource
• The main goal is to isolate the source of the hang

• single thread waiting on a resource?
• multiple threads waiting on a common

resource?
• A good place to start searching is with the

following:
• onstat -u
• onstat -g ath

31

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Listing all threads: onstat -u
• Consider the following snip of onstat -u output:
Userthreads

address flags sessid user tty wait tout locks nreads nwrites

ae18818 Y--P--- 18 laube 14 b7982b8 0 1 0 0

• Examine the wait column which identifies the address of a
resource that this thread is currently waiting on

• The wait column address may be associated with items like
locks, conditions, buffers or perhaps mutexes

• Examine onstat -k, onstat -g con, onstat -b and onstat -g lmx
respectively to check for these items

32

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Find the wait resource
• The onstat -g con output corresponds to prior onstat -u

Conditions with waiters:

cid addr name waiter waittime

543 b7982b8 sm_read 40 43

• The thread associated with session 18 is waiting on the
sm_read condition. This condition describes the fact that
session 18 is associated with a client connected via shared
memory and is currently waiting for a new message from
the client

• You may need to look for the address of the wait resource
within the output of onstat -a or onstat -g all

33

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Listing all threads: onstat -g ath
• onstat -g ath can also be helpful in identifying what

type of resource a thread is waiting for:
Threads:

 tid tcb rstcb prty status vp-class name

 40 b436bb0 ae18818 2 cond wait sm_read 1cpu sqlexec

• The thread id associated with session 18 of the
previous onstat output is 40

• The relevant portion of the onstat -g ath output
shows the status of the thread, and reinforces the
output from ‘onstat -g con’, that it is waiting on an
sm_read condition

34

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Resource hangs - More to consider

• Are threads waiting on a resource held by another
user thread?

• What is the thread doing that holds the resource?
Check onstat -g ses output for the corresponding
session?

• Is the resource consistently held by the same
thread or is it just a ‘hot’ resource desired and held
by many different threads?

35

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Hangs: Evidence collection
• If a hang cannot be remedied by means other than

bouncing the server, before you bring the server
offline, the following will help technical support
diagnose the hang
• Stack traces of relevant threads (poll threads,

listen threads, sqlexec threads, etc.)
• onstat -a
• onstat -g all
• A shared memory dump

36

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Obtaining a stack trace
• Consider the following onstat -g ath output:

Threads:
 tid tcb rstcb prty status vp-class name
 9 b338d70 0 2 running 9tli tlitcppoll
 12 b37a698 0 3 sleeping forever 1cpu tlitcplst
 13 b308300 0 3 sleeping forever 3cpu tlitcplst

• When a thread does not have a status of running, the best method to
obtaining a stack trace is with onstat -g stk <thead_id>

• The command, onstat -g stk 12, will return the stack trace for the listen thread
having a thread id of 12

37

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Stack traces of running threads
• You can use onmode -X stack <vpid>, to generate

a stack of the thread running on the VP listed
• For example: onmode -X stack 9, will generate

a stack trace for the thread running on VP 9
• The onstat -g ath output from previous slides

confirms this to be the tli NET VP that the tlitcppoll
thread is running on

• A message like the following in the online.log will
report the location of the file that contains the stack
trace
11:38:33 stack trace for pid 17327 written to /tmp/af.3f11399

38

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Stack trace of running threads
• In older IDS versions, where onmode -X is not available (7.x and pre-9.21)
• The command, kill -7 <vpid>, generates a stack trace for the thread running

on the virtual process with id, vpid.
• The tlitcppoll thread from prior onstat -g ath output is running on vp-class, 9tli.
• Examine onstat -g sch to associate 9tli with a process id

VP Scheduler Statistics:
 vp pid class semops busy waits spins/wait
 9 17327 tli 2 2 1000

• The process id for VP 9 is 17327. The command to obtain the stack trace of
the running tlitcppoll thread is:

• kill -7 17327
• A message will be written to the online.log describing location of stack

39

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Hung systems: Shared memory dumps

• Shared memory dumps may also provide great
insight for technical support into hung systems

• They are not automatically generated as with
assertion failures

• The command, onstat -o <filename>, can be
executed to manually obtain a shared memory
dump

40

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Summary: Engine hangs
• Diagnosing engine hangs is not an exact science

• Different hangs warrant different diagnostic
methods

• This section has described general considerations
for determining what type of hang you may be
encountering and information that can be gathered
to help diagnose the hang

41

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Misc. Diagnostic Methods and Tools

• AFDEBUG
• SQLIDEBUG
• Error Trapping
• CCFLAGS
• xtrace
• Client IP Trace

42

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

AFDEBUG
• Turning on

• set AFDEBUG environment variable to 1 before starting
engine

• onmode -A 1
• Turning off

• onmode -A 0
• Description

• In the event of an assertion failure, if AFDEBUG is turned on,
the engine will suspend the process that failed. The assertion
failure message in the online.log will indicate that you can
attach to the corresponding process id with a debugger

• May be useful if having trouble obtaining stack trace. Its use has
lessened as shared memory dump analysis skills have
heightened, and product quality has increased

43

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

SQLIDEBUG
• Messages are sent between a client and the IDS via an internal

protocol, SQLI
• Depending on the issues of a particular case, a technical support

engineer may request the capture of these messages to
understand what transpired up to a particular event

• Typically, SQLI messages are captured at the client using the
environment variable SQLIDEBUG
• Setting SQLIDEBUG to ‘2:/tmp/sqli.out’ before running the

client will cause the application to write all SQLI messages to
the file /tmp/sqli.out appended with the process id

• Starting with version 10, SQLIDEBUG has been implemented so
that SQLI messages can also be captured from the server

• Technical support has a utility to interpret the binary file generated
by SQLIDEBUG

Note: A full session on SQLIDEBUG is scheduled for Wednesday at 1PM

44

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Error trapping with IDS
• This command can be used to generate an assertion failure

if the error, error_num, should occur within the server
• onmode -I <error_num>[,<session_id>]

• For example, the command below will instruct the engine to
generate an assertion failure if a syntax error is encountered
• onmode -I 201

• This command clears all error trapping in the server
• onmode -I

• You can use this in conjunction with AFDEBUG to hang the
server if a particular error is encountered

• The following command will release the server when it is
hung on a trapped error
• onmode -i

45

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

CCFLAGS
• CCFLAGS is used by technical support to turn on various

consistency checking within the IDS. This capability allows
the engine to report a problem, ideally, well before an
assertion failure would occur, thus providing a more
accurate account of the details surrounding an engine
failure

• Examples of turning on:
• onmode -f 0x400

• set CCFLAGS environment variable to 0x400 before starting
engine

• Example of turning off:
• onmode -f 0x0

46

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

CCFLAGS Examples
• Memory pool checking on memory allocation and

frees. Used when memory is being corrupted by
another process/thread

• Memory scribble. Used to place a pattern in
memory when allocated or deallocated

• Checking global memory each second. Used to
see memory leaks

• Btree consistency checking. Used to check index
health

47

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

XTRACE
• Tracing of various engine components exists within the server and

may be turned on dynamically with the IBM/Informix utility, xtrace,
that is located in $INFORMIXDIR/bin

• The xtrace buffer is circular, and will overwrite the oldest
information

• The following example sets the xtrace buffer size to accommodate
1000 trace events. Various components can be traced. The
example below illustrates how to trace the server’s TLI networking
component

• xtrace size 1000
• xtrace heavy -c XTF_TLI -f XTF_SYSCALLS
• xtrace on
• xtrace fview > xtrace.out

48

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Client IP Trace
• Ever see a -27001 error message repeatedly in the

online.log? Who is trying to connect and failing?

• In a scenario where multiple clients (10’s, 100’s or
sometimes 1000’s) request a connection, it can be
difficult to diagnose and find the source. In such a
situation, it is necessary for the DBA to know the
client connection details, so that further action
could be taken to rectify the source of the issue

49

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Client IP Trace (cont)
Procedure to trace the client IP
1. Check the status of the IDS server. Must be on-line
2. Set and check the tracing variable values (optional)

• xtrace size 8000 (default 4096)
• xtrace info

3. Initialize the IP trace components:
Component=XTF_IPTRACE, Function=XTF_SYSCALLS
• xtrace heavy –c XTF_IPTRACE –f XTF_SYSCALLS

50

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Client IP Trace (cont)
4. Start the tracing: xtrace on
5. View the client connection details:

xtrace view

Xtrace messages:
For Sockets:
accpsocket - Accepted IP Address <Hex Address> [<Host Name>]
accpsocket - Rejected IP Address <Hex Address>[<Host Name>]

For TLI:
accptli - Rejected IP Address <Hex Address> [(<Host Name>)]
accptli - Queuing IP Address <Hex Address> [(<Host Name>)]
accptli - Failed accept IP Address <Hex Address> [(<Host Name>)]
accptli - Accepting IP Address <Hex Address> [(<Host Name>)]

*** Host Name not printed when host name is not known ***

6. End the tracing session: xtrace off

51

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Any comments or questions ?

52

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Contact Info:
• Session = D06
• Title = Engine Hangs, Debugging Methods,

and Diagnostic Tools: A Starters Guide
• Speaker = Ron Privett
• Company = IBM
• e-mail = rprivett@us.ibm.com

