
2008 IIUG2008 IIUG Conference

IDS Cheetah: Derived Table and
View Processing Techniques

Ajaykumar Gupte
IBM
B07
Day, April 29, 2008 • 09:30 a.m. – 10:30 a.m.

2

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Agenda
• Overview
• Derived table scope
• Iterator (table) function
• Derived table & views
• View folding techniques
• Tips

3

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Overview
• Legacy syntax for collection derived table

• TABLE(MULTISET(<full select >))
• Non SQL Standard
• Limitations – serial/serial8 & blob data types, duplicate column

names, rowid
• Porting applications
• Tricky syntax with IDS multiset datatype -multiset(<element

type> not null)
SELECT * FROM table(multiset (SELECT
customer_num FROM customer));

4

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Overview
• SQL Standard syntax
• ‘AS’ & <table-name> clause optional
• Dynamic processing – no information stored in

catalog tables
• View processing rules are applicable
• Scope

• can be used where full select is allowed,
projection list, nested cases, views, triggers,
stored procedures

• Table references

SELECT * FROM (SELECT customer_num
FROM customer);

5

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Derived Table Scope
• Simple case

SELECT stock_num, manu_code FROM
 (SELECT * FROM items WHERE stock_num = 5);

• AS clause
SELECT stock_num, manu_code FROM
 (SELECT * FROM items WHERE quantity > 3) AS vtab
 WHERE vtab.stock_num = 5;

• Derived columns
SELECT vc1, vc2 FROM
 (SELECT stock_num, manu_code FROM items
 WHERE quantity > 3) AS vtab(vc1,vc2)
 WHERE vtab.vc1 = 5;

6

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Scope
• Multiple tables
SELECT * FROM
 (SELECT stock.stock_num FROM stock, stock_discount
 WHERE stock.stock_num = stock_discount.stock_num)
 AS dtab(common_num);

• Multiple tables with duplicate column names
SELECT * FROM
 (SELECT stock.stock_num , stock_discount.stock_num
 FROM stock, stock_discount
 WHERE stock.stock_num != stock_discount.stock_num);

• Output
stock_num stock_num_1
 1 201
 1 201

7

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Scope
• Skip M - first N inside derived table
SELECT * FROM
 (SELECT skip 5 first 10 stock.stock_num, stock_discount.stock_num
 FROM stock, stock_discount
 WHERE stock.stock_num != stock_discount.stock_num)
 AS dtab(stock_num,dis_stock_num);

• Multiple derived tables
SELECT dtab1.r_num, dtab1.w_num, location, discount
 FROM (SELECT r.customer_num, w.customer_num,w.customer_loc
 FROM retail_customer r, whlsale_customer w
 WHERE w.customer_loc = r.customer_loc)
 AS dtab1(r_num, w_num, location),
 (SELECT r.customer_num, w.customer_num, w.cust_discount
 FROM retail_customer r, whlsale_customer w
 WHERE w.cust_discount = r.cust_discount)
 AS dtab2(r_num, w_num, discount)
 WHERE dtab1.r_num = dtab2.r_num
 AND dtab1.w_num = dtab2.w_num ;

8

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Scope
• ORDER BY case

SELECT * FROM

 (SELECT s.stock_num,sd.stock_num

 FROM stock d, stock_discount sd

 WHERE s.stock_num != sd.stock_num

 ORDER BY 1);

• Derived table inside view
CREATE VIEW stock_view (stock_num,
dis_stock_num) AS SELECT * FROM

 (SELECT s.stock_num, sd.stock_num

 FROM stock s, stock_discount sd

 WHERE s.stock_num != sd.stock_num);

9

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Scope
• New & old syntax

SELECT item_tab.item_order, item_tab.item_id,
 order_tab.ord_date
 FROM table(multiset(SELECT item_num,
 order_num FROM items))
 AS item_tab(item_id,item_order),
 (SELECT order_date, order_num FROM orders)
 AS order_tab(ord_date,ord_num)
WHERE item_tab.item_order = order_tab.ord_num;

• Derived table in projection list
SELECT (SELECT count(*) FROM
 (SELECT * FROM stock, stock_discount
 WHERE stock.stock_num = stock_discount.stock_num)
)

 FROM items;

10

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Scope
• UNION/UNION ALL node

SELECT number FROM
 (SELECT order_num FROM orders
 WHERE order_date > '10/10/1998‘
 UNION
 SELECT order_num FROM items
 WHERE item_subtotal BETWEEN 200 AND 300)
 AS union_tab(number);

SELECT stocknum, catalog_num FROM
 (SELECT stock_num FROM stock
 WHERE unit_price BETWEEN 200 AND 300
 UNION ALL
 SELECT stock_num FROM items
 WHERE item_subtotal BETWEEN 200 AND 300)
AS unionall_tab(stocknum), catalog
WHERE unionall_tab.stocknum = catalog.stock_num;

11

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Scope - Rowid
SELECT rowid FROM (SELECT item_num FROM items)
 AS itemtab(item_num);

SELECT drowid FROM
 (SELECT rowid, item_num FROM items)
 AS itemtab(drowid, item_num);

SELECT rowid FROM
 (SELECT item_num, unit_price
 FROM items, stock
 WHERE items.stock_num = stock.stock_num)
 AS item_stock(item_num, unit_price);

-- 205: Cannot use ROWID for views with union, aggregates, group by, multiple
tables, or derived expressions.

SELECT item_rowid FROM
 (SELECT items.rowid, stock.rowid, item_num,
 unit_price FROM items, stock
 WHERE items.stock_num = stock.stock_num)
 AS item_stock(item_rowid, stock_rowid, item_num,

unit_price);

12

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Scope
• SERIAL/SERIAL8 and BLOB data types

CREATE TABLE blobtab(
 c1 serial, c2 text, c3 byte,
 c4 blob, c5 clob);

INSERT INTO blobtab
 VALUES (1, NULL, NULL, NULL, NULL);

SELECT * FROM (SELECT * FROM blobtab);

• Output
c1 1
c2
c3 <BYTE value>
c4 <SBlob Data>
c5

1 row(s) retrieved.

13

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Scope – Nested Cases
SELECT number FROM
 (SELECT * FROM
 (SELECT item_num FROM items)
 AS item_in(num_in))
 AS item_tab(number);

• Derived table in projection list
SELECT (SELECT count(*) FROM
 (SELECT * FROM stock,
 (SELECT *
 FROM stock_discount d, items I
 WHERE d.manu_code MATCHES i.manu_code)
 AS discount_tab
 WHERE stock.stock_num = discount_tab.stock_num)
) FROM items;

14

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Scope – Subquery
SELECT * FROM
 (SELECT stock_num FROM stock_discount
 WHERE unit_discount > 0.30) AS dtab(stknum)
 WHERE stknum > ANY
 (SELECT stock_num FROM items
 WHERE stock_num = stknum
 AND item_subtotal > 150) ;

SELECT stknum FROM
 (SELECT stock_num FROM stock_discount
 WHERE unit_discount > 0.30) AS dtab(stknum)
 WHERE stknum > 500
 OR EXISTS (SELECT stock_num FROM items
 WHERE stock_num = stknum
 AND item_subtotal > 150) ;

15

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Scope – ANSI Joins
SELECT * FROM
 (SELECT c.stock_num, c.catalog_num
 FROM catalog c ,stock s
 WHERE c.stock_num = s.stock_num
 AND c.manu_code NOT MATCHES 'ANZ')
 AS vtab1(c1,c2)
 LEFT JOIN (SELECT stock_num FROM items
 WHERE item_subtotal > 100) AS vtab2(vc1)
 ON vtab1.c1 = vtab2.vc1
 ORDER BY c1;

SELECT * FROM
 (SELECT c.stock_num, c.catalog_num
 FROM catalog c RIGHT JOIN stock s
 ON c.stock_num = s.stock_num
 AND c.manu_code NOT MATCHES 'ANZ')
 AS vtab1(c1,c2)
 LEFT JOIN (SELECT stock_num FROM items
 WHERE item_subtotal > 100) AS vtab2(vc1)
 ON vtab1.c1 = vtab2.vc1
 ORDER BY c1;

16

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Scope – ANSI Joins
SELECT * FROM
 (SELECT c.stock_num, c.catalog_num
 FROM catalog c RIGHT JOIN stock s
 ON c.stock_num = s.stock_num
 AND c.manu_code NOT MATCHES 'ANZ')
 AS vtab1(c1,c2) FULL JOIN
 (SELECT stock_num FROM items
 WHERE item_subtotal > 100) AS vtab2(vc1)
 ON vtab1.c1 = vtab2.vc1 ORDER BY c1;

SELECT * FROM
 (SELECT c.stock_num, c.catalog_num
 FROM catalog c , stock s
 WHERE c.stock_num = s.stock_num
 AND c.manu_code NOT MATCHES 'ANZ') AS

vtab1(c1,c2), OUTER (SELECT stock_num FROM items
 WHERE item_subtotal > 100) AS vtab2(vc1)
 WHERE vtab1.c1 = vtab2.vc1 ORDER BY c1;

17

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Scope – ANSI Joins - Error Case

• 19820: Informix OUTER JOIN and ANSI JOIN in the same query block.

SELECT * FROM
 (SELECT c.stock_num, c.catalog_num FROM catalog c
 LEFT JOIN stock s
 ON c.stock_num = s.stock_num
 AND c.manu_code NOT MATCHES 'ANZ')
 AS vtab1(c1, c2),
 OUTER (SELECT stock_num FROM items
 WHERE item_subtotal > 100)
 AS vtab2(vc1)
 WHERE vtab1.c1 = vtab2.vc1
 ORDER BY c1;

18

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Scope – ANSI Joins - Error Case

• 19820: Informix OUTER JOIN and ANSI JOIN in the same query block.

SELECT * FROM
 (SELECT c.stock_num, c.catalog_num
 FROM catalog c, stock s
 WHERE c.stock_num = s.stock_num
 AND c.manu_code not matches 'ANZ')
 AS vtab1(c1,c2),
 OUTER (SELECT stock_num
 FROM (SELECT c.stock_num, c.catalog_num
 FROM catalog c
 LEFT JOIN stock s
 ON c.stock_num = s.stock_num)
 intab(col1,col2), items
 WHERE item_subtotal > 100) AS vtab2(vc1)
 WHERE vtab1.c1 = vtab2.vc1
 ORDER BY c1;

19

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Remote Cases
SELECT * FROM (SELECT s.stock_num
 FROM stores@rem_server:stock s, stock_discount sd
 WHERE s.stock_num = sd.stock_num) AS dtab(common_num);

CREATE VIEW stock_view(stock_num) AS
 SELECT * FROM (SELECT s.stock_num FROM
 stores@rem_server:stock s, stock_discount sd
 WHERE s.stock_num = sd.stock_num) AS dtab(common_num);

SELECT * FROM (SELECT c.stock_num, c.catalog_num
 FROM catalog c ,stock s
 WHERE c.stock_num = s.stock_num
 AND c.manu_code NOT MATCHES 'ANZ') AS

vtab1(c1,c2)
 LEFT JOIN (SELECT i.stock_num
 FROM stores@rem_server:items I
 WHERE i.item_subtotal > 100) AS vtab2(vc1)
 ON vtab1.c1 = vtab2.vc1
 ORDER BY c1;

QUERY:

select * from (select s.stock_num from stores@rem_server:stock s, stock_discount sd where
s.stock_num = sd.stock_num) as dtab(common_num)

Estimated Cost: 9
Estimated # of Rows Returned: 14

 1) informix.sd: SEQUENTIAL SCAN

 2) informix.s: REMOTE PATH

 Remote SQL Request:
 select x0.stock_num from stores:"informix".stock x0 where
 (x0.stock_num = ?)

NESTED LOOP JOIN

QUERY:

select * from stock_view

Estimated Cost: 9
Estimated # of Rows Returned: 14

 1) informix.x2: SEQUENTIAL SCAN

 2) informix.x1: REMOTE PATH

 Remote SQL Request:
 select x0.stock_num from stores:"informix".stock x0 where
 (x0.stock_num = ?)

NESTED LOOP JOIN

20

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Iterator (Table) Function

• SPL : ‘with resume’ clause
• C function : ‘with (iterator)’ clause
• Legacy syntax

SELECT * FROM table (function
ret_resume(1));

• SQL Standard syntax
SELECT * FROM table (ret_resume(1));
SELECT * FROM table (ret_resume(1)) AS dtab
(vcol);

• Scope – Similar to derived table

An iterator function is a user-defined function that returns to its calling SQL statement several times,
each time returning a value. The database server gathers these returned values together in an active set.
To access a value in the active set, you must obtain it from a database cursor. Therefore, an iterator
function is a cursor function because it must be associated with a cursor when it is executed.

CREATE PROCEDURE ret_resume(num int)
RETURNING integer;
DEFINE retval integer;
 FOREACH SELECT (item_subtotal * num) INTO retval FROM items
 WHERE item_subtotal < 25

 RETURN retval WITH RESUME;
END FOREACH;
END PROCEDURE;

-- Example - C function using table iterator

CREATE FUNCTION lvargen(arg integer) RETURNS lvarchar WITH (iterator)
EXTERNAL NAME '$USERFUNCDIR/lvar.udr(lvargen))' LANGUAGE C;

21

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Iterator (Table) Function – Scope
• Multiple functions

SELECT * FROM table (ret_resume(1)),
 table (ret_resume(2));

• Derived table
SELECT * FROM (SELECT item_subtotal FROM
items),

 table (ret_resume(2));

• Errors
• select (ret_resume(1)) from items;
• select (select * from table(ret_resume(1))) from items;

Table function can be used at all locations where table references and <full select>
statements are allowed
(Scope is similar to the derived table scope as specified)
Scope

can be used where full select is allowed, projection list, nested cases, views, triggers, stored
procedures
Table references

22

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Iterator (Table) Function – Scope
• ANSI Joins

SELECT * FROM table (ret_resume(1)) tab1(c1)

 LEFT JOIN table (ret_resume(2)) tab2(c2)

 ON tab1.c1 = tab2.c2;

CREATE VIEW iter1(vc1, vc2) AS

 SELECT * FROM

 (SELECT item_subtotal, dcol

 FROM items, table (ret_resume(2)) AS
dtab(dcol));

• Remote case
SELECT count(*) FROM table

 (db1@$MACHINE2:ret_resume(1));

Table function can be used at all locations where table references and <full select>
statements are allowed
(Scope is similar to the derived table scope as specified)
Scope

can be used where full select is allowed, projection list, nested cases, views, triggers, stored
procedures
Table references

23

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Scalar Function and Collection Type Cases
SELECT * from table (proc()) dtab(col1,col2);

 col1 col2

 10 20

1 row(s) retrieved.

SELECT * from table (proc1(1)) AS dtab(vcol);

 vcol

 1

 2

 3

3 row(s) retrieved.

Scalar function
returning 2 int values

Result – row type

Scalar function
returning set value

Table function

CREATE PROCEDURE proc()
RETURNING integer, integer;
DEFINE a1 int;
DEFINE a2 int;
LET a1 = 10;
LET a2 = 20;
RETURN a1, a2;
END PROCEDURE;

CREATE PROCEDURE proc1(num int)
RETURNING set(int not null);
DEFINE s1 set (int not null);
LET s1 = set{1,2,3};
RETURN s1;
END PROCEDURE;

24

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Collection Subquery
CREATE TABLE t1 (a set (int not null));
INSERT INTO t1 VALUES (set{1,2,3});
SELECT * FROM (SELECT a from t1);

a SET{1 ,2 ,3 }

1 row(s) retrieved.

SELECT * FROM table ((SELECT a FROM t1))
 AS vtab(vc);

 vc

 1
 2
 3

3 row(s) retrieved.

Derived Table

Collection
Subquery

25

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Collection Subquery
CREATE TABLE t1 (a set (int not null), b char(5));

INSERT INTO t1 VALUES (set{1,2,3}, "test");

SELECT * FROM table ((select b from t1));

9610: A collection data type must be supplied within this context.

SELECT * FROM table ((SELECT a, a FROM t1));

574: A subquery has returned not exactly one column.

26

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Collection Subquery

CREATE TABLE t1 (a set (int not null));

INSERT INTO t1 VALUES (set{1,2,3});

INSERT INTO t1 VALUES (set{1,2,3});

SELECT * FROM table ((SELECT a FROM t1))

 AS vtab(vc);

 284: A subquery has returned not exactly one row.

27

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Derived Table (DT) and Views
• Derived Table

SELECT * FROM
 (SELECT stock_num FROM items)
 AS dtab(num);

• View
CREATE VIEW v1(num) AS
 SELECT stock_num FROM items;

SELECT * FROM v1;

• View processing rules are applied
• Temp table rules

• Aggregate, order by, group by
• Ansi joins inside Derived table

28

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

View Folding Techniques

• Applicable to Derived table
• UNION ALL & multiple table join with ANSI joins
• Terminology : simple view , complex view , view folding , view

materialization (temp table)
• Fold union all and multiple table join views / DT
• IFX_FOLDVIEW onconfig parameter : 1 or 0
• Query rewrite cases

• Multiple table joins – simple view / DT
• Informix join main query
• ANSI join main query

29

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Multiple Table Joins – Simple View/DT
• Derived Table with Left Outer Join

SELECT * FROM (SELECT stock.stock_num

 FROM stock s, stock_discount sd

 WHERE s.stock_num = sd.stock_num)

 AS dtab(common_num) left join items

 ON dtab.common_num = items.stock_num

 WHERE item_subtotal > 150;

• View
CREATE VIEW va (vc1,vc2,vc3,vc4) AS

(SELECT t1.c1, t1.c2, t2.c1, t2.c2

 FROM t1, t2 WHERE t1.c1 = t2.c1
 AND (t1.c2 < 5)); simple view multi table joins

Derived table

QUERY:

select * from (select stock.stock_num from stock, stock_discount where
stock.stock_num = stock_discount.stock_num) as dtab(common_num) left join
items on dtab.common_num = items.stock_num where item_subtotal > 150

Estimated Cost: 13
Estimated # of Rows Returned: 10

 1) informix.stock_discount: SEQUENTIAL SCAN

 2) informix.items: INDEX PATH

 Filters: informix.items.item_subtotal > $150.00

 (1) Index Keys: stock_num manu_code unit (Serial, fragments: ALL)
 Lower Index Filter: informix.items.stock_num = informix.stock_discount.s
tock_num
NESTED LOOP JOIN
 3) informix.stock: INDEX PATH

 (1) Index Keys: stock_num manu_code unit (Key-Only) (Serial, fragments: A
LL)
 Lower Index Filter: informix.stock.stock_num = informix.stock_discount.s
tock_num
NESTED LOOP JOIN

30

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

SELECT va.vc1, t3.c1 FROM va

 LEFT JOIN t3 ON va.vc1 = t3.c1

1) (Temp Table For View): SEQUENTIAL SCAN

 2) informix.t3: AUTOINDEX PATH

 (1) Index Keys: c1 (Key-Only)
 Lower Index Filter: (Temp Table For View).vc1 = informix.t3.c1

 ON-Filters:(Temp Table For View).vc1 = informix.t3.c1
 NESTED LOOP JOIN(LEFT OUTER JOIN)

old plan

Multiple Table Joins – Simple View/DT

31

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

1) informix.t1: SEQUENTIAL SCAN

 Filters: informix.t1.c2 < 5

 2) informix.t2: AUTOINDEX PATH

 (1) Index Keys: c1 (Key-Only)
 Lower Index Filter: informix.t1.c1 = informix.t2.c1
 NESTED LOOP JOIN

 3) informix.t3: AUTOINDEX PATH

 (1) Index Keys: c1 (Key-Only)
 Lower Index Filter: informix.t1.c1 = informix.t3.c1

 ON-Filters:informix.t1.c1 = informix.t3.c1
 NESTED LOOP JOIN(LEFT OUTER JOIN)

New plan with
fold view

Multiple Table Joins – Simple View/DT

32

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Simple View/DT Folding Cases
SELECT va.vc1, t3.c1 FROM va RIGHT JOIN t3
 ON va.vc1 = t3.c1;

SELECT va.vc1, t3.c1 FROM va FULL JOIN t3
 ON va.vc1 = t3.c1;

SELECT t1.c2, va.vc4, t3.c2 FROM t1
 RIGHT JOIN (va LEFT JOIN t3
 ON va.vc3 = t3.c1)
 ON (t1.c1 = va.vc3
 AND va.vc3 < 2)
 WHERE t1.c1 = 1;

SELECT t3.c1 FROM (t3 RIGHT OUTER JOIN
 (t2 RIGHT OUTER JOIN va ON t2.c1=vc1)
 ON t3.c1=t2.c1);

CREATE VIEW va (vc1, vc2 ,vc3, vc4) AS
(SELECT t1.c1, t1.c2, t2.c1, t2.c2 FROM t1, t2
 WHERE t1.c1 = t2.c1
 AND (t1.c2 < 5));

33

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Simple View/DT Folding Cases
SELECT t3.c1 FROM (t3 LEFT OUTER JOIN
 (t2 LEFT OUTER JOIN va ON t2.c1=vc1)
 ON t3.c1=t2.c1);

SELECT vc1, t1.c2 FROM t1 LEFT OUTER JOIN va
 ON t1.c1=va.vc3
 WHERE t1.c2 < 3
UNION
SELECT vc1, t3.c2 FROM t3 LEFT OUTER JOIN va
 ON t3.c1=va.vc3
 WHERE t3.c2 < 2;

CREATE VIEW va (vc1, vc2 ,vc3, vc4) AS
(SELECT t1.c1, t1.c2, t2.c1, t2.c2 FROM t1, t2
 WHERE t1.c1 = t2.c1
 AND (t1.c2 < 5));

34

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

• Parent query : Regular join, Informix join, ANSI join , Order by

UNION ALL View/DT Query Rewrite

View
S1 S2UA Left Join T1

Single
table

First Node Second Node

S1 Left Join T1 UA S2 Left Join T1

ON Clause

ON ON

35

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

• Right join (view/DT on inner (subservient side))  temp table
• Full join  temp table

UNION ALL View/DT – Cases

View
S1 S2UA Right Join T1

Single
table

Temp Table for view Right Join T1

ON Clause

ON Clause

36

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

CREATE VIEW v0 (vc1,vc2,vc3,vc4) AS (
 SELECT c1, c2, c3, c3-1 FROM t1 WHERE c1 < 5
 UNION ALL
 SELECT c1, c2, c3, c3-1 FROM t2 WHERE c1 > 5);

SELECT v0.vc1, t3.c1 FROM v0 LEFT JOIN t3
 ON v0.vc1 = t3.c1;

1) informix.t1: SEQUENTIAL SCAN

 Filters: informix.t1.c1 < 5

 2) informix.t3: AUTOINDEX PATH

 (1) Index Keys: c1 (Key-Only)
 Lower Index Filter: informix.t1.c1 = informix.t3.c1

 ON-Filters:informix.t1.c1 = informix.t3.c1
 NESTED LOOP JOIN(LEFT OUTER JOIN

New plan with
fold view

UNION ALL View – ANSI Left Join

37

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Union Query:

 1) informix.t2: SEQUENTIAL SCAN

 Filters: informix.t2.c1 > 5

 2) informix.t3: AUTOINDEX PATH

 (1) Index Keys: c1 (Key-Only)
 Lower Index Filter: informix.t2.c1 = informix.t3.c1

 ON-Filters:informix.t2.c1 = informix.t3.c1
 NESTED LOOP JOIN(LEFT OUTER JOIN)

UNION ALL View – ANSI Left Join

38

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

SELECT t3.c1, v0.vc1 FROM t3 RIGHT JOIN v0
 ON v0.vc1 = t3.c1;

1) informix.t1: SEQUENTIAL SCAN

 Filters: informix.t1.c1 < 5

 2) informix.t3: AUTOINDEX PATH

 (1) Index Keys: c1 (Key-Only)
 Lower Index Filter: informix.t1.c1 = informix.t3.c1

 ON-Filters:informix.t1.c1 = informix.t3.c1
 NESTED LOOP JOIN(LEFT OUTER JOIN)

UNION ALL View – ANSI Right Join

39

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Union Query:

1) informix.t2: SEQUENTIAL SCAN

 Filters: informix.t2.c1 > 5

 2) informix.t3: AUTOINDEX PATH

 (1) Index Keys: c1 (Key-Only)
 Lower Index Filter: informix.t2.c1 = informix.t3.c1

 ON-Filters:informix.t2.c1 = informix.t3.c1
 NESTED LOOP JOIN(LEFT OUTER JOIN)

UNION ALL View – ANSI Right Join

40

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Derived Table Cases
• DT (UA) + Left Join  fold into main query
SELECT * FROM (SELECT stock_num FROM stock
 WHERE unit_price BETWEEN 200 and 300
 UNION ALL
 SELECT stock_num FROM stock_discount
 WHERE unit_discount > 0.30) AS dtab(common_num)
 LEFT JOIN items
 ON dtab.common_num = items.stock_num
 WHERE item_subtotal > 150 order by 1;

• DT (UA) + Right Join  temp table
SELECT * FROM (SELECT stock_num FROM stock
 WHERE unit_price BETWEEN 200 and 300
 UNION ALL
 SELECT stock_num FROM stock_discount
 WHERE unit_discount > 0.30) AS dtab(common_num)
 RIGHT JOIN items
 ON dtab.common_num = items.stock_num
 WHERE item_subtotal > 150;

QUERY:

select * from (select stock_num from stock where unit_price between 200 and 300
union all
 select stock_num from stock_discount where unit_discount > 0.30
) as dtab(common_num) left join
items on dtab.common_num = items.stock_num where item_subtotal > 150
order by 1

Estimated Cost: 21
Estimated # of Rows Returned: 9
Temporary Files Required For: Order By

 1) informix.stock: SEQUENTIAL SCAN

 Filters: (informix.stock.unit_price <= $300.00 AND informix.stock.unit_p
rice >= $200.00)

 2) informix.items: INDEX PATH

 Filters: informix.items.item_subtotal > $150.00

 (1) Index Keys: stock_num manu_code unit (Serial, fragments: ALL)
 Lower Index Filter: informix.stock.stock_num = informix.items.stock_num
NESTED LOOP JOIN

Union Query:

Temporary Files Required For: Order By

 1) informix.stock_discount: SEQUENTIAL SCAN

 Filters: informix.greaterthan(informix.stock_discount.unit_discount ,0.3
)

 2) informix.items: INDEX PATH

 Filters: informix.items.item_subtotal > $150.00

 (1) Index Keys: stock_num manu_code unit (Serial, fragments: ALL)
 Lower Index Filter: informix.stock_discount.stock_num = informix.items.s
tock_num
NESTED LOOP JOIN

UDRs in query:

 UDR id : -532
 UDR name: greaterthan
UDRs in query:

 UDR id : -532
 UDR name: greaterthan

QUERY:

select * from (select stock_num from stock where unit_price between 200 and 300
union all
 select stock_num from stock_discount where unit_discount > 0.30
) as dtab(common_num) right join
items on dtab.common_num = items.stock_num where item_subtotal > 150

Estimated Cost: 11
Estimated # of Rows Returned: 14

 1) ajay.stock: SEQUENTIAL SCAN

 Filters: (ajay.stock.unit_price <= $300.00 AND ajay.stock.unit_price >=
$200.00)

UDRs in query:

 UDR id : -532
 UDR name: greaterthan

QUERY:

select * from (select stock_num from stock where unit_price between 200 and 300
union all
 select stock_num from stock_discount where unit_discount > 0.30
) as dtab(common_num) right join
items on dtab.common_num = items.stock_num where item_subtotal > 150

Estimated Cost: 14
Estimated # of Rows Returned: 37

 1) ajay.items: SEQUENTIAL SCAN

 Filters: ajay.items.item_subtotal > $150.00

 2) (Temp Table For Collection Subquery): AUTOINDEX PATH

 (1) Index Keys: stock_num
 Lower Index Filter: (Temp Table For Collection Subquery).common_num
= ajay.items.stock_num
 ON-Filters:(Temp Table For Collection Subquery).common_num = ajay.items.stoc
k_num
 NESTED LOOP JOIN(LEFT OUTER JOIN)

PostJoin-Filters:ajay.items.item_subtotal > $150.00

UDRs in query:

 UDR id : -532
 UDR name: greaterthan

41

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

UNION ALL & Multiple Table Views
CREATE TABLE t1 (c1 int ,c2 int);
CREATE TABLE t2 (c1 int ,c2 int);
CREATE TABLE t3 (c1 int ,c2 int);
CREATE VIEW v1 (v1c1, v1c2) AS
 (SELECT c1, c2 FROM t1 WHERE c1 < 5
 UNION ALL
 SELECT c1, c2 FROM t2 WHERE c1 > 5);
CREATE VIEW v2 (v2c1,v2c2) AS
 (SELECT t1.c1, t2.c2 FROM t1, t2 WHERE t2.c2 < 10);

SELECT * FROM v1, t3, v2 WHERE v1.v1c1 = v2.v2c1
 AND t3.c2 = v1.v1c2;

 SELECT * FROM v2, t3, v1 WHERE v1.v1c1 = v2.v2c1
 AND t3.c2 = v1.v1c2;

Temp Table View folded

View folded
View folded

CASE 1 : select * from v1, t3, v2 where v1.v1c1 = v2.v2c1 and t3.c2 = v1.v1c2;

QUERY:

create view "informix".v1 (v1c1,v1c2) as select x0.c1 ,x0.c2 from "informix".t1
x0 where (x0.c1 < 5) union all select x1.c1 ,x1.c2 from "informix".t2 x1 where
 (x1.c1 > 5);

Estimated Cost: 4
Estimated # of Rows Returned: 2

 1) informix.t1: SEQUENTIAL SCAN

 Filters: informix.t1.c1 < 5

Union Query:

 1) informix.t2: SEQUENTIAL SCAN

 Filters: informix.t2.c1 > 5

QUERY:

select * from v1, t3, v2 where v1.v1c1 = v2.v2c1 and t3.c2 = v1.v1c2

Estimated Cost: 16
Estimated # of Rows Returned: 2

 1) informix.t2: SEQUENTIAL SCAN

 Filters: informix.t2.c2 < 10

 2) informix.t1: SEQUENTIAL SCAN
NESTED LOOP JOIN

 3) (Temp Table For View): SEQUENTIAL SCAN

DYNAMIC HASH JOIN
 Dynamic Hash Filters: (Temp Table For View).v1c1 = informix.t1.c1

 4) informix.t3: SEQUENTIAL SCAN

DYNAMIC HASH JOIN
 Dynamic Hash Filters: informix.t3.c2 = (Temp Table For View).v1c2

--
CASE 2: select * from v2, t3, v1 where v1.v1c1 = v2.v2c1 and t3.c2 = v1.v1c2;

QUERY:

select * from v2, t3, v1 where v1.v1c1 = v2.v2c1 and t3.c2 = v1.v1c2

Estimated Cost: 18
Estimated # of Rows Returned: 5

 1) informix.t1: SEQUENTIAL SCAN

 Filters: informix.t1.c1 < 5

 2) informix.t2: SEQUENTIAL SCAN

 Filters: informix.t2.c2 < 10
NESTED LOOP JOIN

 3) informix.t1: SEQUENTIAL SCAN

 Filters:
 Table Scan Filters: informix.t1.c1 < 5
DYNAMIC HASH JOIN
 Dynamic Hash Filters: informix.t1.c1 = informix.t1.c1

 4) informix.t3: SEQUENTIAL SCAN

DYNAMIC HASH JOIN
 Dynamic Hash Filters: informix.t3.c2 = informix.t1.c2

Union Query:

 1) informix.t2: SEQUENTIAL SCAN

 Filters: informix.t2.c1 > 5

 2) informix.t2: SEQUENTIAL SCAN

 Filters: informix.t2.c2 < 10
NESTED LOOP JOIN

 3) informix.t1: SEQUENTIAL SCAN

 Filters:
 Table Scan Filters: informix.t1.c1 > 5
DYNAMIC HASH JOIN
 Dynamic Hash Filters: informix.t2.c1 = informix.t1.c1

 4) informix.t3: SEQUENTIAL SCAN

DYNAMIC HASH JOIN
 Dynamic Hash Filters: informix.t3.c2 = informix.t2.c2

42

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

CREATE VIEW v1 (vc2) AS
 SELECT t3.c2 FROM t3 WHERE t3.c2 > 10
 UNION ALL
 SELECT t4.c2 FROM t3, t4 WHERE t4.c2 < t3.c2 ;

CREATE VIEW v2 (vc2) AS
 SELECT t4.c2 FROM t3, t4 WHERE t4.c2 < t3.c2 ;

SELECT v1.vc2 FROM v1 LEFT JOIN t1
 ON v1.vc2 = t1.c1
UNION ALL
SELECT v1.vc2 FROM v1 LEFT JOIN t2
 ON v1.vc2 = t2.c1 ;

SELECT v2.vc2 FROM v2 LEFT JOIN t1
 ON v2.vc2 = t1.c1
UNION ALL
SELECT v2.vc2 FROM v2 LEFT JOIN t2
 ON v2.vc2 = t2.c1 ;

Temp Table

View folded

UNION ALL & Multiple Table Views

43

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

NoNoNoYesNoYesUnion
all

YesYesYesYesYesYesSimple

SDSDSDView
type

Main query
FOJ

Main query
ROJ

Main query
LOJ

Query
type

D : view has dominant (outer table) role in main query e.g. V1 left join T1
S : view has subservient (inner table) role in main query e.g. T1 left join V1
Main query LOJ : main query has left outer join
Main query ROJ : main query has right outer join
Main query FOJ : main query has full outer join

UNION ALL View - Summary

44

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Tips

 Avoid legacy syntax
 Compare with view
 Sqexplain
 Order by & nested derived table cases
 ANSI joins inside derived table (or view)
 UNION vs. UNION ALL
 Text for view, trigger & SPL
 Temp table creation with union all view

 View has aggregate, group by, order by, union, distinct , outer
joins (ANSI or Informix)

 Parent query has union , union all , multiple views

45

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

References
• IDS 11.10 Info Center -

http://publib.boulder.ibm.com/infocenter/idshelp/v1
11/index.jsp

• Informix product family -
http://www.ibm.com/software/data/informix

46

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Ajaykumar Gupte
IBM

gupte@us.ibm.com

Session ####

IDS Cheetah: Derived Table and View ProcessingTechniques

