Java Database
Programming with JPA ‘

Sérgio Alexandre Ferreira

Moredata, Lda

B15
Day, April 30, 2008 « 01:00 p.m. — 02:00 p.m.

%gngIIUGmform Conference

. The Power Conference
2008 1IUG Informix Conference For |nforrr‘1';;(Professionals

Introduction

« The Java Persistence API provides an
object/relational mapping facility for managing
relational data in Java applications

+ Created as part of EJB 3.0 within JSR 220

+ Merger of expertise from TopLink, Hibernate,
JDO, EJB vendors and individuals

* Released May 2006 as part of Java EE 5

* Integration with Java EE web and EJB containers
provides enterprise “ease of use” features

ﬁ « Can also be used in Java SE o

. The Power Conference
2008 1IUG Informix Conference For |nforrr‘1';;(Professionals

Why persistence

* In programs data resides in memory

* In OO programs data is very well organized and
structured

* Relational databases however are a very good
way to store and access to data

* RDB are the most used mechanism to store large
amounts of data.

+ OO memory data is very different from relational
organization of information

» Because we need to store data in databases there
ﬁ should exist an easy way to do it

3

c The Power Conference
2008 ”UG |nf0rm|X Conference For Informix Professionals

How persistence works

Program Save -
 —
- - Database

——

. The P Conf
2008 1IUG Informix Conference o e e

For Informix Professionals
What is JPA

« Stands for Java Persistence Architecture
* |t's a Java standard — JSR

+ Evolved from the merge of several working
projects on the industry (EJB, Hibernate, etc).

* Its an APl and a set of tools including a query
language

JSR = formal documents that describe proposed specifications and technologies to
be added to the Java platform

. The Power Conference
2008 1IUG Informix Conference For Informix Professionals

Java Persistence

« Java Persistence consists of three areas:
* The Java Persistence API
« The query language
+ Object/relational mapping metadata

* JPA reference implementation
» TopLink Essentials by GlassFish project
* javax.persistence package
+ open source (under CDDL license)

. The Power Conference
2008 1IUG Informix Conference For |nfom‘$< Professionals

What can we do with JPA

* Map classes and fields to tables and columns in a
declarative way
« Write data in objects to database just with a
method call

+ Read data from the database tables into objects
* Generate the table schema to store data in objects

* Query the data from the database directly from
objects

. The Power Conference
2008 1lUG Informix Conference For |nforrr‘:‘i’x Professionals

How we do it with JPA

* Annotate classes and fields to inform the tables
where the class is persisted

* Execute methods to read / write /synchronize data
from objects with the database

* Make queries in JPQL to access to the information
« The annotated classes are called Entities :-)

. The Power Conference
2008 1IUG Informix Conference For |nfom‘1';;(Professionals

Entities

+ An entity is a lightweight persistence domain object

+ Java class that typically represents a table in a
relational database, instances correspond to rows

* Requirements:

annotated with the javax.persistence.Entity annotation
» public or protected, no-argument constructor
 the class must not be declared £inal

* no methods or persistent instance variables can be declared
final

\\

. The Power Conference
2008 1IUG Informix Conference For Informix Professionals

Requirements for Entities (cont.)

* May be serializable, but not required
« Only needed if passed by value (in a remote call)

+ Entities may extend both entity and non-entity
classes

+ Non-entity classes may extend entity classes

« Persistent instance variables must be declared
private, protected, or package-private

No required business/callback interfaces

QEntity

class Employee({

Example: :
) 1

\\

10

. The Power Conference
2008 1IUG Informix Conference For Informix Professionals

Persistent Fields and Properties

+ The persistent state of an entity can be accessed:
+ through the entity’s instance variables
 through JavaBeans-style properties

+ Supported types:

« primitive types, String, other serializable types,
enumerated types

- other entities and/or collections of entities
e embeddable classes

+ All fields not annotated with @Transient or not
marked as Java transient will be persisted to the data

ﬁ store! £

11

The Power Conference

2008 IIUG Informix Conference For Informix Professionals

Primary Keys in Entities

« Each entity must have a unique object
identifier (persistent identifier)

@Entity
public class Employee {

@Id private int id; | primary key

private String name;

private Date age;

public int getId() { return id; }
public void setId(int id) { this.id = id; }

} e /’:‘j ur \%

. The P Conf
2008 1IUG Informix Conference For ﬁfo?n‘:;<e;ro?e1§i:>enn§§

Persistent Identity

+ Identifier (id) in entity = primary key in
database

* Uniquely identifies entity in memory and in DB

+ Persistent identity types:

« Simple id — single field/property
@Id int id;

« Compound id — multiple fields/properties
@Id int id;
@Id String name;

+ Embedded id - single field of PK class type L
@EmbeddedId EmployeePK id; + 1 1t

—
wniug.org T

13

. The P Conf
2008 1IUG Informix Conference For Informix Professionals

www.iiug.org.

|dentifier Generation

* Identifiers can be generated in the database by
specifying @Generatedvalue on the identifier

* Four pre-defined generation strategies:
AUTO, IDENTITY, SEQUENCE, TABLE
» Generators may pre-exist or be generated

* Specifying strategy of AUTO indicates that the
provider will choose a strategy

@Id RGeneratedValue
private int id;

\\

14

2008 1IUG Informix Conference

The Power Conference
For Informix Professionals

Customizing the Entity Object

* In most of the cases, the defaults are

sufficient

» By default the table name corresponds to the
unqualified name of the class

» Customization:

@Entity (name = “FULLTIME EMPLOYEE")
public class Employee{ ... }

* The defaults of columns can be customized
using the @column annotation

private String id;

private String name;

@Id @Column (name = “EMPLOYEE_ ID”, nullable = false)

@Column (name = “FULL NAME” nullable = true, length = 100) 1 \\
—

15

. The Power Conference
2008 1IUG Informix Conference For Informix Professionals

Entity Relationships

* There are four types of relationship
multiplicities:
* @OneToOne
* @OneToMany
* @ManyToOne
* @ManyToMany

« The direction of a relationship can be:
+ bidirectional — owning side and inverse side
 unidirectional — owning side only

« Owning side specifies the physical mappipg_

_—
— 1

16

2008 1IUG Informix Conference

Relation Attributes

+ CascadeType

* ALL, PERSIST, MERGE, REMOVE,
REFRESH

* FetchType
* LAZY, EAGER

The Power Conference
For Informix Professionals

@ManyToMany (
cascade = {CascadeType.PERSIST, CascadeType.MERGE},
ﬂ fetch = FetchType.EAGER) 2)

17

2008 IIUG Informix Conference

ManyToOne Mapping

The Power Conference
For Informix Professionals

@Entity | l
pubﬁ;ﬁiclass Sale) { ‘ SALE
int(id; ;\ ID | lCUST_ID‘
@ManyToOne ‘ CUSTOMER]

Customer (cust);

o | ..]

4

18

The Power Conference

2008 IIUG Informix Conference For Informix Professionals

OneToMany Mapping

' |

@Entity ' v
ublic class (Customer
P { CUSTOMER
RId
int (id; >])
A

@OneToMany(mappedBy="cust”
Yet<Sale> sales;

}

@Entity

public class Sale /f SALE
eId o |... [cusTp]|
@ManyToOne

Customer| cust;

19

The Power Conference

2008 IIUG Informix Conference For Informix Professionals

ManyToMany Mapping

QEntity
public class Customer ({

@JoinTable (
name="CUSTOMER SALE",
joinColumns=@JoinColumn (
name="CUSTOMER_ID", referencedColumnName="customer_ id"),
inverseJoinColumns=@JoinColumn (

name="SALE ID", referencesColumnName="sale_ id")
Collection<Sale> sales;

QEntity
public class Sale {

@ManyToMany (mappedBy="sales”)
Collection<Customer> customers; ﬁ -

20

. The Power Conference
2008 1IUG Informix Conference For Informix Professionals

Entity Inheritance

» An important capability of the JPA is its
support for inheritance and polymorphism

« Entities can inherit from other entities and
from non-entities

* The @Inheritance annotation identifies a
mapping strategy:
« SINGLE_TABLE
« JOINED
ﬁ - TABLE_PER_CLASS M 1

21

. The P Conf
2008 1IUG Informix Conference For Informix Professionals

Inheritance Example

QEntity
@Inheritance (strategy=SINGLE_TABLE)

@DiscriminatorColumn (name="DISC", discriminatorType=STRING)

@DiscriminatorValue (name="CUSTOMER")

public class Customer { . . . }

QEntity

@DiscriminatorValue (name="VCUSTOMER")

public class ValuedCustomer extends Customer { . . . }

* SINGLE TABLE strategy - all classes in the hierarchy are mapped
to a single table in the database

¢ Discriminator column - contains a value that identifies the subclass
* Discriminator type - {STRING, CHAR, INTEGER}

¢ Discriminator value - value entered into the discriminator column
for each entity in a class hierarchy T

\\

www.iiug.org.

. The Power Conference
2008 1IUG Informix Conference For Informix Professionals

Managing Entities
+ Entities are managed by the entity manager

» The entity manager is represented by
javax.persistence.EntityManager

instances

+ Each EntityManager instance is associated
with a persistence context

* A persistence context defines the scope
under which particular entity instances are |
ﬁ created, persisted, and removed + k%

23

. The P Conf
2008 1IUG Informix Conference For I?'nfo?r‘r‘:;<e;r01%r]s§i?nnaﬁz

Persistence Context

» A persistence context is a set of managed entity
instances that exist in a particular data store
 Entities keyed by their persistent identity

« Only one entity with a given persistent identity may exist in
the persistence context

» Entities are added to the persistence context, but are not
individually removable (“detached”)

» Controlled and managed by EntityManager

« Contents of persistence context change as a result of
operations on EntityManager API

\\

24

The Power Conference

2008 lIUG Informix Conference For Informix Professionals

Persistence Context

Persistence

Applicati
ppiication Context

EntityManager

—
MyEntity a ‘ ——p

MyEntity A

MyEntity C
MyEntity B

MyEntity b

Entities

Entity
state

25

. The Power Conference
2008 1IUG Informix Conference For Informix Professionals

Entity Manager

» An EntityManager instance is used to
manage the state and life cycle of entities
within a persistence context

+ The EntityManager API:
+ creates and removes persistent entity instances
« finds entities by the entity’s primary key
+ allows queries to be run on entities
» There are two types of EntityManagers:
 Application-Managed EntityManagers
ﬁ + Container-Managed EntityManagers e

26

2008 1UG Informix Conference For nformix Professiondis
Application-Managed EntityManager

+ Applications create EntityManager instances by using
directly persistence and EntityManagerFactory:

* javax.persistence.Persistence
* Root class for obtaining an EntityManager
 Locates provider service for a named persistence unit
 Invokes on the provider to obtain an EntityManagerFactory

* javax.persistence.EntityManagerFactory

+ Creates EntityManagers for a named persistence unit or
configuration

\\

27

. The Power Conference
2008 [IUG Informix Conference For Informix Professionala

Application-Managed EntityManager

public class PersistenceProgram {

public static void main(String[] args)

{
EntityManagerFactory emf =
Persistence.createEntityManagerFactory (“SomePUnit”) ;
EntityManager em = emf.createEntityManager () ;
em.getTransaction () .begin() ;
// Perform finds, execute queries,
// update entities, etc.
em.getTransaction () .commit() ;
em.close() ;

emf.close() ;

28

. The P Conf
2008 1IUG Informix Conference For Informix Professionals

Container-Managed EntityManagers

+ An EntityManager with a transactional
persistence context can be injected by using
the @pPersistenceContext annotation

public class BookmarkSeviceImpl implements BookmarkService {
@PersistenceContext

private EntityManager em;

public void save (Bookmark bookmark) {

if (bookmark.getId() == null) {
em.persist (bookmark) ;
} else {
em.merge (bookmark) ; 3

}

\\

‘www.iiug.org. }

29

. The Power Conference
2008 1IUG Informix Conference For Informix Professionals

Transactions

+ JPA transactions can be managed by:
* the users application
+ a framework (such as Spring)
* a J2EE container
» Transactions can be controller in two ways:

» Java Transaction API (JTA)
+ container-managed entity manager
« EntityTransaction API (tx.begin(), tx.commit(), etc)
ﬁ + application-managed entity manager ¥

30

2008 1IUG Informix Conference

The Power Conference
For Informix Professionals

Operations on Entity Objects

 EntityManager API operations:

persist () - Insert the state of an entity into the db

remove () - Delete the entity state from the db

refresh () - Reload the entity state from the db

merge () - Synchronize the state of detached entity with the pc
f£ind () - Execute a simple PK query

createQuery () - Create query instance using dynamic JP QL
createNamedQuery () - Create instance for a predefined query
createNativeQuery () - Create instance for an SQL query
contains () - Determine if entity is managed by pc

f£lush () - Force synchronization of pc to database

\\

31

The Power Conference

2008 1IUG Informix Conference For Informix Professionals

Entity Instance’s Life Cycle

 Instances are in one of four states:
* New
* Managed
» Detached
* Removed
» The state of persistent entities is

synchronized to the database when the
transaction commits

« To force synchronization of the managed
entity to the data store, invoke the £1ush () + X
method “F

—

32

. The Power Conference
2008 1IUG Informix Conference For |nforrr‘1';;(Professionals

Persistence Units

+ A persistence unit defines a set of all entity
classes that are managed by EntityManager
instances in an application

* For example, some set of entities can share
one common provider (Toplink), whereas
other set of entities can depend on a different
provider (Hibernate)

» Persistence units are defined by the
ﬁ persistence.xml configuration file

33

. The Power Conference
2008 1IUG Informix Conference For Informix Professionals

And JPQL

 Itis a query language

* Operates against entity objects

+ Serves as a proxy to access to the database

* Used to maintain independence from the database

34

2008 1IUG Informix Conference

How do | start

* Download one of the implementations:
» Toplink
» Hibernate
« Apache OpenJPA

* Read the documents

+ Start a project on eclipse or netbeans

The Power Conference
For Informix Professionals

35

. The Power Conference
2008 1IUG Informix Conference For |nforrr‘1';;(Professionals

Conclusion

JPA its a standard to maintain objects
synchronized with databases

JPA is easy to use

JPA don't need an application server
JPA can be used in J2EE or J2SE
There are several JPA implementations

Code made with JPA it's portable between
implementations and databases

With JPA software is a lot more independent of
vendors (Application Servers and Databases)

_—
—

36

. The P Conf
2008 1IUG Informix Conference For Informix Professionals

Session ##H#
Java Database Programming with JPA

Sérgio Ferreira
Moredata
Sergio.Ferreira@moredata.pt

37

