
1

2008 IIUG
2008 IIUG Conference

Java Database
Programming with JPA

Sérgio Alexandre Ferreira
Moredata, Lda
B15
Day, April 30, 2008 • 01:00 p.m. – 02:00 p.m.

22

2

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Introduction
• The Java Persistence API provides an

object/relational mapping facility for managing
relational data in Java applications

• Created as part of EJB 3.0 within JSR 220
• Merger of expertise from TopLink, Hibernate,

JDO, EJB vendors and individuals
• Released May 2006 as part of Java EE 5
• Integration with Java EE web and EJB containers

provides enterprise “ease of use” features
• Can also be used in Java SE

3

3

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Why persistence
• In programs data resides in memory
• In OO programs data is very well organized and

structured
• Relational databases however are a very good

way to store and access to data
• RDB are the most used mechanism to store large

amounts of data.
• OO memory data is very different from relational

organization of information
• Because we need to store data in databases there

should exist an easy way to do it

4

4

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

How persistence works

Database

Program

Object

Object

Object

Save

Read

5

JSR = formal documents that describe proposed specifications and technologies to
be added to the Java platform

5

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

What is JPA
• Stands for Java Persistence Architecture
• It's a Java standard – JSR
• Evolved from the merge of several working

projects on the industry (EJB, Hibernate, etc).
• Its an API and a set of tools including a query

language

66

6

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Java Persistence
• Java Persistence consists of three areas:

• The Java Persistence API
• The query language
• Object/relational mapping metadata

• JPA reference implementation
• TopLink Essentials by GlassFish project

• javax.persistence package
• open source (under CDDL license)
https://glassfish.dev.java.net/javaee5/persistence/

7

7

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

What can we do with JPA
• Map classes and fields to tables and columns in a

declarative way
• Write data in objects to database just with a

method call
• Read data from the database tables into objects

• Generate the table schema to store data in objects
• Query the data from the database directly from

objects

8

8

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

How we do it with JPA
• Annotate classes and fields to inform the tables

where the class is persisted
• Execute methods to read / write /synchronize data

from objects with the database
• Make queries in JPQL to access to the information
• The annotated classes are called Entities :-)

99

9

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Entities
• An entity is a lightweight persistence domain object
• Java class that typically represents a table in a

relational database, instances correspond to rows
• Requirements:

• annotated with the javax.persistence.Entity annotation
• public or protected, no-argument constructor
• the class must not be declared final
• no methods or persistent instance variables can be declared
final

1010

10

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Requirements for Entities (cont.)
• May be Serializable, but not required

• Only needed if passed by value (in a remote call)

• Entities may extend both entity and non-entity
classes

• Non-entity classes may extend entity classes

• Persistent instance variables must be declared
private, protected, or package-private

• No required business/callback interfaces

• Example:
@Entity
class Employee{

. . .
}

1111

11

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Persistent Fields and Properties
• The persistent state of an entity can be accessed:

• through the entity’s instance variables
• through JavaBeans-style properties

• Supported types:
• primitive types, String, other serializable types,

enumerated types
• other entities and/or collections of entities
• embeddable classes

• All fields not annotated with @Transient or not
marked as Java transient will be persisted to the data
store!

1212

12

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Primary Keys in Entities
• Each entity must have a unique object

identifier (persistent identifier)
@Entity

public class Employee {

@Id private int id;

private String name;

private Date age;

public int getId() { return id; }

public void setId(int id) { this.id = id; }

. . .

}

primary key

1313

13

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Persistent Identity
• Identifier (id) in entity = primary key in

database

• Uniquely identifies entity in memory and in DB
• Persistent identity types:

• Simple id – single field/property
@Id int id;

• Compound id – multiple fields/properties
@Id int id;
@Id String name;

• Embedded id – single field of PK class type
@EmbeddedId EmployeePK id;

1414

14

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Identifier Generation

 @Id @GeneratedValue
 private int id;

• Identifiers can be generated in the database by
specifying @GeneratedValue on the identifier

• Four pre-defined generation strategies:
• AUTO, IDENTITY, SEQUENCE, TABLE

• Generators may pre-exist or be generated
• Specifying strategy of AUTO indicates that the

provider will choose a strategy

1515

15

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Customizing the Entity Object
• In most of the cases, the defaults are

sufficient
• By default the table name corresponds to the

unqualified name of the class
• Customization:

• The defaults of columns can be customized
using the @Column annotation

@Entity(name = “FULLTIME_EMPLOYEE")
public class Employee{ …… }

@Id @Column(name = “EMPLOYEE_ID”, nullable = false)
private String id;

@Column(name = “FULL_NAME” nullable = true, length = 100)
private String name;

1616

16

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Entity Relationships
• There are four types of relationship

multiplicities:
• @OneToOne
• @OneToMany
• @ManyToOne
• @ManyToMany

• The direction of a relationship can be:
• bidirectional – owning side and inverse side
• unidirectional – owning side only

• Owning side specifies the physical mapping

1717

17

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Relation Attributes

• CascadeType
• ALL, PERSIST, MERGE, REMOVE,

REFRESH
• FetchType

• LAZY, EAGER

@ManyToMany(
cascade = {CascadeType.PERSIST, CascadeType.MERGE},
fetch = FetchType.EAGER)

1818

18

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

ManyToOne Mapping

public class Sale {

 int id;

 ...

 Customer cust;
}
}

SALE
CUST_IDID

CUSTOMER
. . .ID

@Entity

@ManyToOne

@Id
. . .

1919

19

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

OneToMany Mapping

public class Sale {

 int id;
 ...

 Customer cust;
}

public class Customer {

 int id;
 ...

 Set<Sale> sales;
}

CUSTOMER
ID . . .

SALE
CUST_IDID . . .

@Entity

 @ManyToOne

@Id

@Entity

@Id

@OneToMany(mappedBy=“cust”
(

2020

20

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

ManyToMany Mapping
@Entity
public class Customer {
 ...
 @JoinTable(
 name="CUSTOMER_SALE",

joinColumns=@JoinColumn(
 name="CUSTOMER_ID",referencedColumnName="customer_id"),

inverseJoinColumns=@JoinColumn(
name="SALE_ID", referencesColumnName="sale_id")

 Collection<Sale> sales;
}

@Entity
public class Sale {
 ...
 @ManyToMany(mappedBy=“sales”)
 Collection<Customer> customers;
}

2121

21

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Entity Inheritance

• An important capability of the JPA is its
support for inheritance and polymorphism

• Entities can inherit from other entities and
from non-entities

• The @Inheritance annotation identifies a
mapping strategy:
• SINGLE_TABLE
• JOINED
• TABLE_PER_CLASS

2222

22

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Inheritance Example
@Entity
@Inheritance(strategy=SINGLE_TABLE)
@DiscriminatorColumn(name="DISC", discriminatorType=STRING)
@DiscriminatorValue(name="CUSTOMER")
public class Customer { . . . }

@Entity

@DiscriminatorValue(name="VCUSTOMER")
public class ValuedCustomer extends Customer { . . . }

• SINGLE_TABLE strategy - all classes in the hierarchy are mapped
to a single table in the database

• Discriminator column - contains a value that identifies the subclass
• Discriminator type - {STRING, CHAR, INTEGER}
• Discriminator value - value entered into the discriminator column

for each entity in a class hierarchy

2323

23

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Managing Entities
• Entities are managed by the entity manager

• The entity manager is represented by
javax.persistence.EntityManager
instances

• Each EntityManager instance is associated
with a persistence context

• A persistence context defines the scope
under which particular entity instances are
created, persisted, and removed

2424

24

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Persistence Context
• A persistence context is a set of managed entity

instances that exist in a particular data store
• Entities keyed by their persistent identity
• Only one entity with a given persistent identity may exist in

the persistence context
• Entities are added to the persistence context, but are not

individually removable (“detached”)

• Controlled and managed by EntityManager
• Contents of persistence context change as a result of

operations on EntityManager API

2525

25

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Application Persistence
Context

Entities

MyEntity A

MyEntity B

MyEntity C
MyEntity a

EntityManager

MyEntity b

Entity
state

Persistence Context

2626

26

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Entity Manager
• An EntityManager instance is used to

manage the state and life cycle of entities
within a persistence context

• The EntityManager API:
• creates and removes persistent entity instances
• finds entities by the entity’s primary key
• allows queries to be run on entities

• There are two types of EntityManagers:
• Application-Managed EntityManagers
• Container-Managed EntityManagers

2727

27

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Application-Managed EntityManager
• Applications create EntityManager instances by using

directly Persistence and EntityManagerFactory:

• javax.persistence.Persistence

• Root class for obtaining an EntityManager
• Locates provider service for a named persistence unit
• Invokes on the provider to obtain an EntityManagerFactory

• javax.persistence.EntityManagerFactory

• Creates EntityManagers for a named persistence unit or
configuration

2828

28

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Application-Managed EntityManager
public class PersistenceProgram {
 public static void main(String[] args)
 {
 EntityManagerFactory emf =

Persistence.createEntityManagerFactory(“SomePUnit”);
 EntityManager em = emf.createEntityManager();
 em.getTransaction().begin();
 // Perform finds, execute queries,
 // update entities, etc.
 em.getTransaction().commit();
 em.close();
 emf.close();
 }
}

2929

29

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Container-Managed EntityManagers

• An EntityManager with a transactional
persistence context can be injected by using
the @PersistenceContext annotation

public class BookmarkSeviceImpl implements BookmarkService {
@PersistenceContext
private EntityManager em;

public void save(Bookmark bookmark) {
if (bookmark.getId() == null) {

em.persist(bookmark);
} else {

em.merge(bookmark);
}

}

3030

30

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Transactions
• JPA transactions can be managed by:

• the users application
• a framework (such as Spring)
• a J2EE container

• Transactions can be controller in two ways:
• Java Transaction API (JTA)

• container-managed entity manager
• EntityTransaction API (tx.begin(), tx.commit(), etc)

• application-managed entity manager

3131

31

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Operations on Entity Objects
• EntityManager API operations:

• persist()- Insert the state of an entity into the db
• remove()- Delete the entity state from the db
• refresh()- Reload the entity state from the db
• merge()- Synchronize the state of detached entity with the pc
• find()- Execute a simple PK query
• createQuery()- Create query instance using dynamic JP QL
• createNamedQuery()- Create instance for a predefined query
• createNativeQuery()- Create instance for an SQL query
• contains()- Determine if entity is managed by pc
• flush()- Force synchronization of pc to database

3232

32

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Entity Instance’s Life Cycle
• Instances are in one of four states:

• New
• Managed
• Detached
• Removed

• The state of persistent entities is
synchronized to the database when the
transaction commits

• To force synchronization of the managed
entity to the data store, invoke the flush()
method

3333

33

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Persistence Units
• A persistence unit defines a set of all entity

classes that are managed by EntityManager
instances in an application

• For example, some set of entities can share
one common provider (Toplink), whereas
other set of entities can depend on a different
provider (Hibernate)

• Persistence units are defined by the
persistence.xml configuration file

34

34

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

And JPQL
• It is a query language
• Operates against entity objects
• Serves as a proxy to access to the database
• Used to maintain independence from the database

35

35

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

How do I start
• Download one of the implementations:

• Toplink
• Hibernate
• Apache OpenJPA

• Read the documents
• Start a project on eclipse or netbeans

36

36

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Conclusion
• JPA its a standard to maintain objects

synchronized with databases
• JPA is easy to use
• JPA don't need an application server
• JPA can be used in J2EE or J2SE
• There are several JPA implementations
• Code made with JPA it's portable between

implementations and databases
• With JPA software is a lot more independent of

vendors (Application Servers and Databases)

37

37

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Sérgio Ferreira
Moredata

Sergio.Ferreira@moredata.pt

Session ####
Java Database Programming with JPA

