
4/5/08

1

2008 IIUG2008 IIUG Conference

Using extensibility
in everyday applications

C14
Wednesday April 30th 10:50-11:50 AM

Kevin Brown, Informix Lead Architect, IBM,
kbrown3@us.ibm.com

Version Date: Oct 18, 2001 8:58 pm SKC(CD)

4/5/08

2

2

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Agenda

• What is and why use extensibility?
• Using “extended” data types in applications
• A quick look at DataBlades

4/5/08

3

3

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

What is and why use extensibility??
• From a technical perspective, it’s

• Non-standard data types, constraints, inheritance, functions and APIs in the
database engine

• Software-driven functionality by applications or DataBlades

• Used by developers and DBAs to
• Create and manage data and applications according to the business use of

the information rather than theoretical mathematic data modeling rules
• Create more efficient applications and data environments if used properly
• Solve problems not easily possible before!!!!!!

• It requires application developers and DBAs to
• Think about information differently
• Use database engine functionality instead of treating engines as generic

storage commodities with no additional business value

4/5/08

4

4

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Problem solving with extensibility --
hierarchies

• Without an extensible engine, you
must flatten the relationships into a
master-detail relationship

• The relationships are nested, not
regular 1:N model format

• Requires multiple passes through the
data to find all the recursive
relationships

• Can only be solved with procedural or
set processing and as the levels
increase, the programming becomes
more complex, losing the ability to
dynamically create SQL operations

Corporation

Region

Branch

Region Region

Branch Branch

Account Account Account

4/5/08

5

5

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Solving the hierarchical problem
create table employee
(emp_id serial primary key,
 mgr_id int);
foreign key (emp_id) references

employee (mgr_id);

Who works for whom?

• Procedural
• Select all the employees for the specified manager
• Recursively select all the employees under each person

 Performance impact: execution time increases exponentially with the number of levels

• Set processing
• For each level, select the employee count:

select count(*) from employee e1, employee e2, employee e3,
employee e4, employee e5

where e5.mgr_id = :value
and e4.mgr_id = e5.emp_id
and e3.mgr_id = e4.emp_id
and e2.mgr_id = e3.emp_id
and e1.mgr_id = e2.emp_id;

• Performance impact: join complexity increases with the number of levels

4/5/08

6

6

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Solving the hierarchical problem
• With an extensible engine, can use a data type and functions that

represent and use data in its native, business format as a
hierarchical relationship using numbers to identify each component

1.0

1.1 1.2 1.3

1.2.1 1.2.2 1.2.3

1.2.3.2 1.2.3.3 1.2.3.4

1.2.3.4.5

• Uses a data type and user-defined
functions

• Bundled with Cheetah
• Freely available from the IIUG

code library
• Supports indexes and other

relational functionality

4/5/08

7

7

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

• Adjacent levels represent the manager and employee identification:
1.2 employee #2, manager #1

Similarly:
1.2.3.4  employee #4, manager #3 reports to manager #2 reports to manager #1

• Functional comparisons are now possible
• LessThan(), LessThanOrEqual(), Equal, GreaterThan(), GreaterThanOrEqual(),

NotEqual()

1.12.1 > 1.4.17.8

IsAncestor(), IsChild(), IsDescendant(), IsParent(), Ancestors()

• Other admin functions on the structure of the data
• Graft(), Increment(), NewLevel(), GetMember(), GetParent()

Solving the hierarchical
problem

Create table employee
(emp_id node primary key);

4/5/08

8

8

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Impact on the application is significant
• Need the manager Node value: mgr_val

select count(*)
from employee
where isAncestor(emp_id, :mgr_val);

or

 select count(*)
from employee
where emp_id > :mgr_val
and emp_id < increment(:mgr_val);

• Performance impact: becomes linear processing using
either a table scan or a partial index scan

Solving the hierarchical problem

4/5/08

9

9

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Lessons learned

• The database engine **does** matter

• A little creative thinking and wise of use of new
technology can easily solve problems which
couldn’t be solved before

• Model the data logically and physically as it’s used
in the business to make applications easier to write

4/5/08

10

10

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

OpaqueOpaque DistinctDistinct

Row Data TypeRow Data Type

NamedNamed UnnamedUnnamed

CollectionCollection

MultisetMultiset ListList

SetSet

User-DefinedUser-Defined
ComplexComplex

Extended DataExtended Data
TypesTypes

BooleanBoolean
Int8Int8

Serial8Serial8
LvarcharLvarchar

New Built-inNew Built-in
TypesTypes

Existing Built-inExisting Built-in
TypesTypes

Data TypesData Types

Complex and User-Defined Data Types

4/5/08

11

11

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Built-in Data Types
New Built-In:

• int8 (8 bytes)
• serial8 (8 bytes)

• Range is -9,223,372,036,854,775,807 to
9,223,372,036,854,775,807

• must add UC to serial8 to ensure uniqueness
• one serial8 and serial per table

• boolean
• valid values: “t”, “f”, null. case sensitive

• lvarchar (variable length character data type; 32k maximum –
check your system for on-disk maximum)

4/5/08

12

12

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

OpaqueOpaque DistinctDistinct

Row Data TypeRow Data Type

NamedNamed UnnamedUnnamed

CollectionCollection

MultisetMultiset ListList

SetSet

User-DefinedUser-Defined
ComplexComplex

Extended DataExtended Data
TypesTypes

BooleanBoolean
Int8Int8

Serial8Serial8
LvarcharLvarchar

New Built-inNew Built-in
TypesTypes

Existing Built-inExisting Built-in
TypesTypes

Data TypesData Types

Complex and User-Defined Data Types

4/5/08

13

13

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

No “alter type” statement, must
drop and recreate

Sys Adm is more complexIntuitive

Not simple SQLRefers to a group of elements
by a single name

More complexLess coding
DISADVANTAGESADVANTAGES

Complex Data Types: Row Types
Analogous to C structures, comes in two “flavors”:

• NAMED
• strongly typed, ID’ed by name, has inheritance, used to build columns
and tables

• UNNAMED
• weakly typed, ID’ed by structure, no inheritance, used to build
columns, created on the fly

Can contain built-in, collection, opaque, distinct, another row type data
types

 Caveat: serial and serial8 not allowed in row types

4/5/08

14

14

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

 Named:
 create row type name_t
 (fname char(20), lname char(20));

 create row type address_t
 (street_1 char(20),
 street_2 char(20),
 city char(20),
 state char(2),
 zip char(9));

 create table student
(student_id serial,
 name name_t,
 address address_t,
 company char(30));

Unnamed:
ROW (a int, b char (10))

Note: is also equal to
ROW(x int, y char(10))

create table part
(part_id serial,
cost decimal,
part_dimensions row

(length decimal,
width decimal,
height decimal,
weight decimal));

Complex Data Types: Row

4/5/08

15

15

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Using Named Row Types in SQL statements:

Insert statement:
insert into student values (1234,
row(“John”,”Doe”)::name_t,row("1234 Main Street","",
"Anytown","TX","75022")::address_t, "Informix
Software")

Select statement:
select * from student where name.lname matches
"Doe”;

Result set:
 student_id 1234
 name ROW('John ','Doe ')
 address ROW('1234 Main Street ',' ,'Anytown ','TX','75022 ')
 company Informix Software

Use of datatype
keyword

Cast the row type!

Access data with
‘dot’ notation

Complex Data Types: Row

4/5/08

16

16

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Complex Data Types: Row

To drop a named row type:

drop row type address_t restrict;

4/5/08

17

17

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

OpaqueOpaque DistinctDistinct

Row Data TypeRow Data Type

NamedNamed UnnamedUnnamed

CollectionCollection

MultisetMultiset ListList

SetSet

User-DefinedUser-Defined
ComplexComplex

Extended DataExtended Data
TypesTypes

BooleanBoolean
Int8Int8

Serial8Serial8
LvarcharLvarchar

New Built-inNew Built-in
TypesTypes

Existing Built-inExisting Built-in
TypesTypes

Data TypesData Types

Complex and User-Defined Data Types

4/5/08

18

18

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Complex Data Types: Collections

Grouping of elements of the same datatype
(char, int), max size = 32 KB

Used when
• The data is meaningless without the context of the

other members in the collection (e.g., golf scores, to-do
list, set of names)

• Individual data elements are not likely to be directly
queried by position

• The maximum number of data elements is less
than 32

Can be null

4/5/08

19

19

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Complex Data Types: Collections
Three kinds of collections:

• Set - unordered, no duplicates allowed
set {“apple”, ”orange”, ”grapefruit”, “plum”}

• Multiset - unordered, duplicates allowed
multiset {“apple”, “orange”, “grapefruit”, “apple”, “plum”,
“grapefruit”}

• List - ordered, duplicates allowed
list {“apple”, “orange”, “grapefruit”, “apple”, “plum”, “grapefruit”}

4/5/08

20

20

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Complex Data Types: Collections
Create a table to work with:

create table class
(class_id serial, class_name varchar(60), description lvarchar, prereqs set(char(20) not null));

Insert syntax is similar to named row types:

insert into class values (300, “Performance and Tuning”, “Covers advanced information on tuning the
Informix Dynamic Server”, (SET{“RDD”,”BSQL”}));

Use the “in” keyword to query values in a collection
SQL

select * from class where (“ASQL”) in prereqs;

4GL
define xyz char(20)
define set_var set(char(20))
select prereqs into set_var from class where class_id = 300

foreach del_set_cursor for
select * into xyz from table(set_var)
if xyz matches “RDD” then

delete from table(set_var) where current of del_set_cursor
end if

end foreach

4/5/08

21

21

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Complex Data Types: Collections

You can not update one element in a collection, you must
replace the whole collection:

update class set prereqs = (set{“RDD”,”ASQL”,”BSQL”}) where
class_id = 300;

update class set prereqs = set_char where class_id = 300;

4/5/08

22

22

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

OpaqueOpaque DistinctDistinct

Row Data TypeRow Data Type

NamedNamed UnnamedUnnamed

CollectionCollection

MultisetMultiset ListList

SetSet

User-DefinedUser-Defined
ComplexComplex

Extended DataExtended Data
TypesTypes

BooleanBoolean
Int8Int8

Serial8Serial8
LvarcharLvarchar

New Built-inNew Built-in
TypesTypes

Existing Built-inExisting Built-in
TypesTypes

Data TypesData Types

Complex and User-Defined Data Types

4/5/08

23

23

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

User-Defined Data Types: Distinct
Two user-defined data types (UDTs):

Distinct
• data type modeled on an existing data type
• has a unique name to distinguish it from other similar “types”
• inherits the internal structure from the source type
• inherits operations and casts defined over its

source type
• can define additional operations on distinct types

Opaque
• data type that is unknown to the database server
• you must define the internal structure, functions,

and operations (C, C++, or Java)

4/5/08

24

24

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

create distinct type dollar as decimal;
create distinct type aus_dollar as decimal;

create table sales
 (sku int,
 sales_date date,
 us_sales dollar,
 aus_sales aus_dollar);

insert into sales values (1234, today, 15.0::dollar,0::aus_dollar);
insert into sales values (5678, today, 0::dollar, 75.0::aus_dollar);

select sku, (sum(us_sales) + sum(aus_sales))
 from sales where sales_date = today
 group by 1;

error: 674 - routine (plus) can not be resolved

User-Defined Data Types: Distinct

4/5/08

25

25

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Need to create some UDFs that handle the type and value
conversion for you:

create function usdlr_to_ausdlr(parm1 dollar)
 returning aus_dollar
 specific usd_to_ausd;
 return (parm1::decimal * 1.8)::aus_dollar;
end function;

create function ausdlr_to_usdlr(parm1 aus_dollar)
 returning dollar
 specific ausd_to_usd;
 return (parm1::decimal / 1.8)::dollar;
end function;

select sku, (sum(us_sales) + sum(ausdlr_to_usdlr(aus_sales))::dollar)
 from sales where sales_date = today
 group by 1;

User-Defined Data Types: Distinct

4/5/08

26

26

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

User-Defined Data Types: Opaque

An opaque data type stores a single “value” that cannot
be divided into components by the engine.

Implemented as C or Java structures and manipulated
by a set of routines written in C or Java

An opaque “value” is stored in its entirety by the engine
without any interpretation of the contents or its structure

All access to an opaque type is through functions written
by the user. You define the storage size of the data type
and input and output routines

4/5/08

27

27

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

User-Defined Data Types: Opaque
1. Create the C / Java data structure to represent the internal data

structure
2. Write the support functions in C / Java
3. Register the opaque data type with the “create opaque type” statement

create opaque type type_name (internallength = length,
alignment = num_bytes);

Note: length is in bytes, alignment = 1,2,4,8 bytes (default = 4)

create opaque type type_name (internallength = variable,
maxlen = length);

Note: default length = 2 KB, max value = 32 kb

4. Register the support functions with the “create function” statement. If in
Java, type will be stored in sbspace(s)

4/5/08

28

28

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

create opaque type my_type(internallength=8, alignment=4);

create function support_in(lvarchar)
returning my_type with (not variant);
external name “/funcs/my_type.so”
language C

end function;

create implict cast (lvarchar as my_type with support_in);

5. Grant access to the opaque data type and support functions
6. Write any user-defined functions needed to support the opaque data

type - input, output, destroy, compare, aggregates, send, receive,
etc.

7. Provide any customized secondary-access methods for creating
indexes

User-Defined Data Types: Opaque

4/5/08

29

29

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Casts and Casting

4/5/08

30

30

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

• Casts allow you to make comparisons between values of different data types
or substitute a value of one data type for a value of another data type.

create function ausdlr_to_usdlr(parm1 aus_dollar)
 returning dollar
 specific ausd_to_usd;
 return (parm1::decimal / 1.8)::dollar;
end function;

• Engine provides a number of “built-in” casts (int to decimal, numeric to char,
etc.) for most built-in datatypes

• Must create user-defined casts for user-defined types. Must be unique with
respect to source and target data types

• Can not create casts for collections, Large Objects, or unnamed
row types

Casts and Casting

4/5/08

31

31

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Casts and Casting
Two kinds of user-defined casts:

explicit
. . . where price >= (cast aus_dollar as dollar)
. . . return (parm1::decimal / 1.8)::dollar;
create explicit cast (aus_dollar as dollar with us_dlr_to_us_dlr);

implicit
create implicit cast (aus_dollar as dollar);
create implicit cast (aus_dollar as dollar with aus_dlr_to_us_dlr);

 Implicit casts automatically invoked when:
one data type is passed to a user-defined routine whose parameters are of

another data type (and a cast has already been defined)
expressions are evaluated that need to operate on two similar data types

4/5/08

32

32

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Casts and Casting – Implicit Casts
select sum(us_sales) + sum(aus_sales) from sales;

674: Routine (plus) can not be resolved.

create implicit cast (aus_dollar as dollar);
select sum(us_sales) + sum(aus_sales) from sales;

(expression) 120.00  Wrong result!

drop cast (aus_dollar as dollar);
create implicit cast (aus_dollar as dollar with

ausdlr_to_usdlr);
select sum(us_sales) + sum(aus_sales) from sales;

(expression) 80.00  Right result

4/5/08

33

33

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

select sum(us_sales) + sum(aus_sales) from sales;
674: Routine (plus) can not be resolved

create explicit cast (aus_dollar as dollar);
select sum(us_sales) + sum(aus_sales) from sales;
674: Routine (plus) can not be resolved

select sum(us_sales) + sum(aus_sales)::dollar from sales;
(expression) 120.00

drop cast (aus_dollar as dollar);

create explicit cast (aus_dollar as dollar with ausdlr_to_usdlr);
select sum(us_sales) + sum(aus_sales)::dollar from sales;

(expression) 80.00

Casts and Casting – Explicit Casts

4/5/08

34

34

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Previous examples were “straight” casts. You can also create cast
“functions” to cast types with dissimilar data structures

write the cast function in C / Java / SPL

create function opaque_to_opaque (input_arg my_type_1)
returns my_type_2
return cast(cast(input_arg as lvarchar) as my_type_2);

end function;

2. register the cast function with the “create function” command

3. register the cast with the “create cast” command

create explicit cast (my_type_1 as my_type_2 with opaque_to_opaque);

Casts and Casting

4/5/08

35

35

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

User-defined Routines
(UDRs)

4/5/08

36

36

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

UDRs
There are User Defined Functions and Procedures (UDFs and
UDPs)

Can be internal or external in nature. Internal are written in SPL,
external can be written in C or Java.

If written in Java, compile into a class then .jar file. When
registered in the engine, .jar file will be brought into a sbspace then
executed when needed by the JVM in the engine.

If written in C, create a shared object library in a directory owned
by “informix” with 755 permissions.

UDF -

4/5/08

37

37

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

UDRs
UDRs should be concise and precise. Don’t want engine
wasting resources plowing though verbose code. The
values returned should be relevant from a business
perspective (e.g. proper domain)

Make sure you include error handling in the code

ALWAYS use a “specific” name, or alias, for every UDR
to properly identify each one - used to drop, grant, or revoke
permissions as well as to permit function overloading

4/5/08

38

38

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

UDRs

Function overloading occurs when two or more functions have the
same name but different signatures

signature = UDR name and parameter list

create function plus (in_1 dollar, in_2 aus_dollar) . .
create function plus (in_1 aus_dollar, in_2 euro) . . .
create function plus (in_1 euro, in_2 aus_dollar) . . .

{Note: these probably should be formalized into user-defined aggregates}

When properly registered, instance will use the data types passed
to determine which UDR should be used

4/5/08

39

39

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

UDRs
When creating UDRs, you may restrict their
operation to a user-defined VP. This helps prevent
an “ill-tempered” UDR from affecting other critical
instance operations.

create function routine_name (param_list)
{ returns | returning } typename
[specific specific_name]
[with (internal | handlesnulls | [[not] variant]

| class=“vp_class”)]
external name ‘full_path_name_of_file‘
language language [[not] variant]

end function;

in the $ONCONFIG file:
VPCLASS fince_vp ,num=2 # vps for finance UDRs

 or
onmode -p +2 fince_vp

4/5/08

40

40

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

To drop UDRs, must either use full signature

drop function plus(euro, aus_dollar);

or the “specific” name
create function plus (euro, aus_dollar)
returning aus_dollar
specific euro_to_ausdlr

drop specific function euro_to_ausdlr;

UDRs

4/5/08

41

41

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

UDRs
Default behavior of UDRs is single-threaded, can be
“parallelized” if the following conditions are met:

• only in DSS environments (PDQPRIORITY > 1)

• "parallelizable" keyword is added to UDR creation statement

• external UDRs only (C / Java) that use PDQ thread-safe SAPI calls
(see DataBlade manual for list of SAPI calls)

• no complex types in input parameters or return values

• multiple fragments must be scanned

• Not directly called (singleton execution)

• not an “iterator” function - called in loops to return multiple values
similar to with resume in SPL

4/5/08

42

42

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

UDRs
Examples:

create function bigger(int,int) returns int
specific big_parallel
with(parallelizable,class=“test_vps”) external name
“/path/plludr.bld(bigger)” language C;

alter function bigger (int,int) with (add parallelizable, add class=“test_vps”);

Can monitor the parallel execution of UDRs through
• “set explain out” command
• the ISA
• onstat -g mgm
• onstat -g ses sess_id
• onstat -g ath

4/5/08

43

43

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

DataBlade Modules and
the Blade Manager

4/5/08

44

44

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

DataBlade Modules
• DataBlade Modules extend the functionality of the engine by adding

new UDTs, casts, interfaces, UDRs, error messages, client code
(where necessary), aggregates, access methods to manipulate the
UDTs

• Functionality available through SQL, SPL, API calls to external
functions

• Can be mixed and matched to support any application

• While the code is loaded at an instance level, blade registration
occurs at a database level. With registration information contained
in the database system tables, if you drop the database, blades
become unregistered

4/5/08

45

45

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

DataBlade Modules
Install the blade in $INFORMIXDIR/extend (tar, cpio, ?)

May have its own “install” script to brand binaries, use serial # /
license key from engine install unless third-party requires
unique key setup

Use Blade Manager to manage blade registration
• graphical version available with NT and ISA
• command line only on Unix / Linux

Filenames are case sensitive

4/5/08

46

46

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Existing DataBlades
• TimeSeries
• Real-Time Loader
• Spatial (ESRI, MapInfo, Geodetic)
• Text (Verity & Excalibur)
• Alerter
• Voice Recognition
• Facial Recognition
• Fingerprint Recognition
• C-ISAM
• Node (hierarchical)
• XML
• Web
• Image
• Basic Text Search
• Binary

4/5/08

47

47

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Summary

• The database **does** matter!!!!
• Extensibility features can easily be used to create

physical and logical data models which match the
business use of information

• With data modeled correctly, applications will be
richer yet easier to develop and maintain

4/5/08

48

48

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

4/5/08

49

49

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

