
2008 IIUG2008 IIUG Conference

Top Tips learned from
Performance PMRs

Dr. Elisabeth Bach
IBM

D01
Monday, April 28, 2008 • 09:30 a.m. – 10:30 a.m.

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

2

Contents
• Performance PMRs -- a real world example
• How slow is too slow? Get a baseline
• What is your application doing anyway? SQL and

other tracing
• A few new onstats
• Build my index faster!
• Update statistics and PDQ
• Top Tips Summary

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

3

Stories from support
• It was on one Monday morning…..
• Everything was slow
• We needed to fix it IMMEDIATELY

What has happened?

What was changed?

What is bad now?

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

4

Rules of thumb
You cannot extrapolate from one measurement.

Always repeat a few times.

Where there is a persistent queue, there is likely a
bottleneck.

Look at the online.log

Stick to your processes, especially during times of stress.

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

5

DONTDRAINPOOLS
• Environment variable

Set DONTDRAINPOOL=1
Read during initialization

• Writes a message to the online.log
Server is disabling pools draining

• Sessions might use more memory as before

DONTDRAINPOOLS is an environment variable that influences the way
memory allocated to IDS user sessions is de-allocated. The default behavior
of the database server is to aggressively drain unused memory from a
session’s pool .This default setting make sense, if sessions are around for
some time, if they request and free memory often and if the amount of memory
is limited.
In an environment in which we have many sessions, and performance is more
likely to be cpu bound than memory bound, it can be useful to set
DONTDRAINPOOLS. It is also useful in environments like that of our
customer, which is using many cpu-vps and a greater number of sessions.
Setting DONTDRAINPOOLS mean that the freeing of unused memory of user
sessions is done only at closure time.
This can result in the server utilizing more memory overall, however this
might be more desirable than the high CPU usage.
This means that the cpu will have less work to do, however every single
session can now use more memory.
How much more memory is used is dependent on the individual system and
application and has to be tested.

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

6

How slow is too slow?
• What is your system doing anyway?
• How to monitor a perfectly well-behaved system

• Shell script for UNIX
• Scripts for Windows
• OAT

BASELINE INFO IS ESSENTIAL FOR
PERFORMANCE TUNING

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

7

Snooping at your system
System information
• cpu usage
• memory usage
• disk usage
Onstats
• onstat –g glo
• onstat –g rea
• onstat –g act
what else is dependent on your system

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

8

Snooping at your system: UNIX
• Use system tools for system info

• sar, top, vmstat
• What is available

• You can use a never ending script or schedule it
• Find an example in the notes

#!/usr/bin/ksh
#
Seconds to sleep between next monitoring loop
e.g. GENERAL_SLEEP=3600
sleep 3600 seconds between measurements
#
GENERAL_SLEEP=3600
REA_SLEEP=2
SPI_SLEEP=2
Endless:
while [1 -ge 0]
do

UHRZEIT=$(date +%Y-%m-%d-%H:%M:%S)
for g in d D p
do

onstat -$g > onstat-$g-----$UHRZEIT.out
done

UHRZEIT=$(date +%Y-%m-%d-%H:%M:%S)
for g in glo seg iof mem dic
do

onstat -g $g > onstat-g-$g-$UHRZEIT.out
done
for g in rea
do

UHRZEIT2="`date +%Y-%m-%d-
%H:%M:%S`"

echo "Num Threads Ready (subtract 7)" >
onstat-g-$g-$UHRZEIT2.out

for k in 1 2 3
do
onstat -g $g | wc -l >> onstat-g-$g-

$UHRZEIT2.out
sleep $REA_SLEEP
done

done

UHRZEIT=$(date +%Y-%m-%d-%H:%M:%S)
for g in u d
do

sar -$g 1 5 > sar-$g--------$UHRZEIT.out
done
UHRZEIT=$(date +%Y-%m-%d-%H:%M:%S)
top -d 1 -f top----------$UHRZEIT.out
sleep $GENERAL_SLEEP

done

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

9

Snooping at your system: Windows

• Use Performance
Monitor's report
functionality for
system information

• Consider using WMI
• Use schtasks for

scheduling
• Find a script in the

notes

@echo off
rem
rem these variable are set so that we can append the date and time
rem if you have an other date delimiter than “.” you need to do the same thing
rem for date as for time
Rem
set startDate=%date%
set startTime=%time%
set /a sth=%startTime:~0,2%
set /a stm=1%startTime:~3,2% - 100
set /a sts=1%startTime:~6,2% - 100
set onsttime=%startDate%.%sth%.%stm%.%sts%
rem set informix env here
rem
set INFORMIXDIR=C:\sqldists\1150~1.FC1
set INFORMIXSERVER=ol_1150
set ONCONFIG=ONCONFIG.ol_1150
set PATH=C:\sqldists\1150~1.FC1\bin;%PATH%
set
CLASSPATH=%INFORMIXDIR%\extend\krakatoa\krakatoa.jar;%INFORMI
XDIR%\extend\krakatoa\jdbc.jar;%CLASSPATH%
set DBTEMP=C:\sqldists\1150~1.FC1\infxtmp
set CLIENT_LOCALE=EN_US.CP1252
set DB_LOCALE=EN_US.8859-1
set SERVER_LOCALE=EN_US.CP1252
set DBLANG=EN_US.CP1252
mode con codepage select=1252
rem start doing the onstats here add more if you like
rem to separate commands in a line use &
rem onstats

for %%g in (d D p) do onstat -%%g > onstat-%%g-
%onsttime%.out

for %%g in (glo seg iof mem dic) do onstat -g %%g > onstat-g-
%%g-%onsttime%.out

rem ready threads
echo "Num Threads Ready (subtract 7)" >

onstat-g-rea-%onsttime%.out
for %%k in (1,1,3) do onstat -g rea | find /v /c ""

>> onstat-g-rea-%onsttime%.out & ping -n 3 127.0.0.1 >nul

rem the ping is for sleep

In principle you can also add everything in one script using WMI (Windows
Management Instrumentation)
WMI provides an interface to much of the objects in Windows, and can be
used to do many admin tasks via the command
Line. For examples of those scripts, check the MS WMI documentation. The
counters for the processor can be called in a script via a function called
win32_PerfFormattedData_PerfOS_Processor.

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

10

Snooping at you system with OAT

The tasks introduced in version 11.10 add the ability to continually monitor the
system. You can define jobs to gather monitoring information, some jobs are
automatically defined.
OAT gives you the ability to see those tasks, to change their execution
frequency and with OAT 2.20 new graphics to display this information have
been added.

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

11

What is my application doing?
• Application developer and DBA are different jobs
• Applications might be developed using tools that

don’t tell you the queries they are using
• What to do when the users are complaining?

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

12

SQL tracing before 11.10
• Before version 11.10 SQL tracing was not easy
• So how to find out which statement is used often?

• Onstat –g sql shows session info
• Only a snapshot

• Gather data often and compare statements
• Find a script in notes (run as informix!)

#!/usr/bin/ksh
if [! -x /usr/bin/ksh]
 then
 echo "please change '#!/usr/bin/ksh' in line 1 to the path of a ksh"
 echo "compatible shell and delete this if ..."
 exit 1
fi
Multiuser OnLine sql statistics without sysmaster.
#
Usage: SqlStat nsamples sleep-in-secs
#
Results are in directory "erg.<hh:mm:ss>"
#
Filename: erg.<hh:mm:ss>/0...0<num>.*_*
<num> is the number of samples for the sql statement in this file.
Just use "ls -l" to show files ordered by fequency of sql statements.
#
nsamples=120
sleep=1
[$# -ge 1] && nsamples="$1"
[$# -ge 2] && sleep="$2"
scansql=cat
nloops=1
onstat_u () {
onstat -u | awk '$2 == "active," {exit}
 f == 1 {print $1, $3}
 $1 == "address" {f = 1}'
}
typeset -Z5 k=0
echo nsamples $nsamples, sleep $sleep, nloops $nloops
m=1
while [$m -le $nloops]
 do
 echo "**** loop $m, `date`"
 erg=erg.`date +%H:%M:%S`
 mkdir $erg >/dev/null 2>&1
 cd $erg
 #rm -f *.*_*
 date > INFO
 num=0
 n=1
 while [$n -le $nsamples]
 do
 echo "$n of $nsamples "
 # "rstcb | sid" Liste aller user
 onstat_u | sort >../rstcb_sid
 # liste aller interessanten threads: rstcb, state, ...
 onstat -g ath | egrep -v "netnorm|sm_read" | \
 awk '/^ *[0-9].*sqlexec/ \
 {printf("%s %s=%s=%s=%s=%s=%s\n", $3, $5, $6, $7, $8, $9, $10);}'
\
 >../running
 i=`cat ../running | wc -l`
 if [$i -gt 0]
 then
 # Waehle eine thread, random
 let i=\($RANDOM%i\)+1
 # Hole sid
 sed -n -e "$i p" ../running > ../Tmp1
 sid=`join -o 2.2 ../Tmp1 ../rstcb_sid`
 if ["$sid"]
 then
 # Hole sql stmt
 onstat -g sql $sid | \
 awk '/^Current SQL statement/ { f = 1; next; }
 f == 1 { print; }
 /^$/ { f = 0; } ' | $scansql >../Tmp
 if [-s ../Tmp]
 then
 let num=$num+1
 # file name: <counter>.<sum output 1>_<sum output 2>
 set -- `sum ../Tmp`
 f=`ls *.$1_$2 2>/dev/null`
 if ["$f"]
 then
 # file existiert, erhoehe counter part in filename
 k=${f%%.*}
 let k=$k+1
 f2=$k.$1_$2
 mv $f $f2
 else
 echo >> ../Tmp
 let k=1
 f2=$k.$1_$2
 mv ../Tmp $f2
 fi
 # append time, sid, host, etc.
 t=`date +%d.%m.%H:%M`
 set -- `onstat -g ses $sid | \
 awk 'f == 1 { print $2, $4, $5; exit; }
 $1 == "id" { f = 1; }'`
 if ["$1"]
 then
 fe=`ps -fp$2 | awk 'NR == 2 {print $8}'`
 echo "@ $t, ses $sid, user $1, pid $2, host $3, fe $fe"\
 >> $f2
 echo " `awk '{print $2}' ../Tmp1`" | \
 sed -e "s/=/ /g" >> $f2
 else
 echo "@ $t: session exited" >> $f2
 fi
 fi
 fi
 rm -f ../Tmp1
 fi
 sleep $sleep
 n=`expr $n + 1`
 done
 echo
 date >> INFO
 echo $num non empty samples >> INFO
 cd ..
 m=`expr $m + 1`
done
~
~#!/usr/bin/ksh
if [! -x /usr/bin/ksh]
 then
 echo "please change '#!/usr/bin/ksh' in line 1 to the path of a ksh"
 echo "compatible shell and delete this if ..."
 exit 1
fi
Multiuser OnLine sql statistics without sysmaster.
#
Usage: SqlStat nsamples sleep-in-secs
#
Results are in directory "erg.<hh:mm:ss>"
#
Filename: erg.<hh:mm:ss>/0...0<num>.*_*
<num> is the number of samples for the sql statement in this file.
Just use "ls -l" to show files ordered by fequency of sql statements.
#
nsamples=120
sleep=1
[$# -ge 1] && nsamples="$1"
[$# -ge 2] && sleep="$2"
scansql=cat
nloops=1
onstat_u () {
onstat -u | awk '$2 == "active," {exit}
 f == 1 {print $1, $3}
 $1 == "address" {f = 1}'
}
typeset -Z5 k=0
echo nsamples $nsamples, sleep $sleep, nloops $nloops
m=1
while [$m -le $nloops]
 do
 echo "**** loop $m, `date`"
 erg=erg.`date +%H:%M:%S`
 mkdir $erg >/dev/null 2>&1
 cd $erg
 #rm -f *.*_*
 date > INFO
 num=0
 n=1
 while [$n -le $nsamples]
 do
 echo "$n of $nsamples "
 # "rstcb | sid" Liste aller user
 onstat_u | sort >../rstcb_sid
 # liste aller interessanten threads: rstcb, state, ...
 onstat -g ath | egrep -v "netnorm|sm_read" | \
 awk '/^ *[0-9].*sqlexec/ \
 {printf("%s %s=%s=%s=%s=%s=%s\n", $3, $5, $6, $7, $8, $9, $10);}'
\
 >../running
 i=`cat ../running | wc -l`
 if [$i -gt 0]
 then
 # Waehle eine thread, random
 let i=\($RANDOM%i\)+1
 # Hole sid
 sed -n -e "$i p" ../running > ../Tmp1
 sid=`join -o 2.2 ../Tmp1 ../rstcb_sid`
 if ["$sid"]
 then
 # Hole sql stmt
 onstat -g sql $sid | \
 awk '/^Current SQL statement/ { f = 1; next; }
 f == 1 { print; }
 /^$/ { f = 0; } ' | $scansql >../Tmp
 if [-s ../Tmp]
 then
 let num=$num+1
 # file name: <counter>.<sum output 1>_<sum output 2>
 set -- `sum ../Tmp`
 f=`ls *.$1_$2 2>/dev/null`
 if ["$f"]
 then
 # file existiert, erhoehe counter part in filename
 k=${f%%.*}
 let k=$k+1
 f2=$k.$1_$2
 mv $f $f2
 else
 echo >> ../Tmp
 let k=1
 f2=$k.$1_$2
 mv ../Tmp $f2
 fi
 # append time, sid, host, etc.
 t=`date +%d.%m.%H:%M`
 set -- `onstat -g ses $sid | \
 awk 'f == 1 { print $2, $4, $5; exit; }
 $1 == "id" { f = 1; }'`
 if ["$1"]
 then
 fe=`ps -fp$2 | awk 'NR == 2 {print $8}'`
 echo "@ $t, ses $sid, user $1, pid $2, host $3, fe $fe"\
 >> $f2
 echo " `awk '{print $2}' ../Tmp1`" | \
 sed -e "s/=/ /g" >> $f2
 else
 echo "@ $t: session exited" >> $f2
 fi
 fi
 fi
 rm -f ../Tmp1
 fi
 sleep $sleep
 n=`expr $n + 1`
 done
 echo
 date >> INFO
 echo $num non empty samples >> INFO
 cd ..
 m=`expr $m + 1`
done

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

13

What you get with the script
• 00005.2935_1 statement 2935 was found 5 times
• 00008.2859_1 statement 2859 was found 8 times
• 00007.8876_1 statement 8876 was found 7 times
• INFO shows how many statements were found
• Each files shows

• Statement: create table t1 (c1 int, c2 char(20))
• What statement was doing

@ 31.03.15:02, ses 2257, user ebach, pid 22, host 10904, fe
 cond wait cp 1cpu sqlexec

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

14

SQLtrace with 11.10

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

15

What can you do?
• Change the application
• If you can‘t, check the query plan

• Check update statistics currency
• Add additional indexes
• Use optimizer hints
• If you can‘t

• Consider using external directives

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

16

onstats

• New or improved in 11.10
• onstat –g cpu
• onstat –g ath
• onstat –g ckp

You cannot extrapolate from one measurement.
Always repeat a few times.

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

17

onstat –g cpu
• New with version 11.10
• Tells you when each thread was scheduled
• Identifies what is currently hanging
• Use along with onstat –g stk to see what threads are doing/waiting for

IBM Informix Dynamic Server Version 11.10.FC2W1 -- On-Line -- Up 3 days 05:51:27 -- 8649728 Kbytes

Thread CPU Info:
 tid name vp Last Run CPU Time #scheds status
 4 aio vp 0 36aio* 03/26 17:41:55 491.8493 74091 IO Idle
 5 msc vp 0 37msc* 03/26 17:41:59 8544.2635 10100529 IO Idle
 6 aio vp 1 38aio* 03/26 17:12:08 5.8684 426 IO Idle
 7 main_loop() 13cpu 03/26 17:41:59 244.5516 576872 sleeping secs: 1
 8 tlitcppoll 39tli* 03/26 17:41:59 280247.3047 138388591 running
15 flush_sub(0) 13cpu 03/26 17:41:59 121.2926 1401344 sleeping secs:
16 flush_sub(11) 7cpu 03/26 17:41:58 66.5788 1044132 IO Wai
26 kaio 1cpu* 03/26 17:41:59 141010.0865 44337017 running
52 kaio 3cpu* 03/26 17:41:59 135401.9964 40585737 IO Idle
80 kaio 7cpu* 03/26 17:41:59 115871.8548 28019443 running
138 aio vp 4 47aio* 03/23 11:51:36 0.3423 44 IO Idle
139 aio vp 5 48aio* 03/23 11:51:48 0.4359 74 IO Idle
140 aio vp 6 49aio* 03/23 11:52:11 0.7263 80 IO Idle

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

18

onstat –g ath
• Now comes with more detailed information
• No longer simply „sleeping“

IBM Informix Dynamic Server Version 11.10.FC2W1 -- On-Line (CKPT REQ) -- Up 15 days 00:36:28 --
197632 Kbytes

Blocked:CKPT

Threads:
 tid tcb rstcb prty status vp-class name
 2 1113a1ad8 0 1 running 3lio* lio vp 0
 3 1113c1c80 0 1 IO Idle 4pio* pio vp 0
 4 1113e0c80 0 1 running 5aio* aio vp 0
 5 1113ffc80 0 1 IO Idle 6msc* msc vp 0
 6 11142ec80 0 1 IO Idle 7aio* aio vp 1
 7 1113a1d28 1111c9028 1 sleeping secs: 1 11cpu main_loop()
 40 1116ca348 1111ce930 1 sleeping forever 1cpu* dbWorker2
 48 111f83b58 1111cc8d0 1 cond wait bp_cond 9cpu bf_priosweep()
 242 11224c028 0 1 IO Idle 18aio* aio vp 2
 336 1126e18e8 1111d19c0 1 cond wait cp 1cpu sqlexec
 338 11505fbf8 1111e6db0 1 IO Wait 9cpu sqlexec
 339 1126c8028 1111e4d50 1 IO Wait 1cpu sqlexec

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

19

onstat –g ckp
• Information about the last 15 checkpoints
• Check for what is triggering the checkpoint, duration, blocking time and flush rates to get an idea of what

the system is doing

 Critical Sections Physical Log Logical Log
 Clock Total Flush Block # Ckpt Wait Long # Dirty Dskflu Total Avg Total Avg
Interval Time Trigger LSN Time Time Time Waits Time Time Time Buffers /Sec Pages /Sec Pages /Sec
972 15:47:45 CKPTINTVL 1202645:0x1a2c8018 80.9 54.0 0.0 106 0.9 19.4 26.9 88184 1632 11968 35 17988 53
973 15:47:46 *Backup 1202645:0x1b3fb3a4 0.5 0.3 0.0 12 0.0 0.5 0.5 4867 4867 4396 79 4403 80
974 15:54:47 CKPTINTVL 1202646:0x2516064 92.9 87.7 0.0 70 0.6 3.3 4.4 78129 890 28595 85 29965 89
975 15:58:40 CKPTINTVL 1202646:0xc209018 21.6 20.6 0.0 25 0.0 0.8 0.9 36483 1768 37922 126 41051 136
976 16:03:55 CKPTINTVL 1202646:0x14792018 12.3 11.4 0.0 34 0.0 0.5 0.8 39396 3448 33283 102 34913 107
977 16:09:16 CKPTINTVL 1202647:0x2098018 22.0 21.8 0.0 11 0.0 0.1 0.2 43636 2004 56345 180 53651 171

Max Plog Max Llog Max Dskflush Avg Dskflush Avg Dirty Blocked
pages/sec pages/sec Time pages/sec pages/sec Time
3207 2222 1741 2611 14 0

Based on the current workload, the physical log might be too small to accommodate the time it takes to flush the buffer pool during
checkpoint processing. The server might block transactions during checkpoints.
If the server blocks transactions, increase the physical log size to at least 11391264 KB.

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

20

Index builds
• How is an index built
• How to improve performance?

• Smaller indexes
• DS_NONPDQ_MEMORY

• Bigger indexes
• Tweak sort parameters

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

21

How is an index built?
• Read through the data

• Either single or fragmented
• Sort the data

• Got either one set or a number of sets
• Merge the data, if necessary

Do as much in memory as possible.

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

22

Index build: DS_NONPDQ_MEMORY

• Tune DS_NONPDQ_QUERY_MEM
• memory given to sorts without PDQ
• Minimum Value=Default 128KB
• Maximum Value 25% of DS_TOTAL MEMORY
• Change while instance is online

onmode -wf DS_NONPDQ_QUERY_MEM=5000

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

23

How is an index built (using PDQ)?

Data Scan

Sort

Sort

Sort

BT Appender

BT Appender

BT Appender

BT Merger

Rule of thumb: Sorts in memory are good, sort on disks are slower.
So make sure you can sort in memory.
Also the more sort threads we have the more merges need to be done.
So there might be an optimization issue here, regarding the number of sort
theads.

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

24

Large Index builds

• Ideal: sort in memory
• Enable PDQ

• PDQPRIORITY
• DS_TOTAL_MEMORY
• DS_MAX_QUERIES

• PSORT_NPROCS

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

25

PDQ and Update statistics
• create table t1 (c1 int, c2 int, c3 char(20), c4 char(20))
• add two millions rows
• Without extra sort memory:
• table will be scanned 4 times
• Can be seen in set explain output:

PASS #1 c3
PASS #2 c4
PASS #3 c1
PASS #4 c2

Here are the results for three different runs of update statistics:
UPDATE STATISTICS:
==================
Table: ebach.t1
Mode: HIGH
Number of Bins: 267 Bin size 10813
Sort data 166.1 MB Sort memory granted 15.0 MB
Estimated number of table scans 4
PASS #1 c3
PASS #2 c4
PASS #3 c1
PASS #4 c2
Scan 7 Sort 1 Build 1 Insert 0 Close 0 Total 9
Completed pass 1 in 0 minutes 9 seconds
Scan 7 Sort 0 Build 2 Insert 0 Close 0 Total 9
Completed pass 2 in 0 minutes 9 seconds
Scan 5 Sort 1 Build 0 Insert 0 Close 0 Total 6
Completed pass 3 in 0 minutes 6 seconds
Set PDQ PRIO 25
UPDATE STATISTICS:
==================
Table: ebach.t1
Mode: HIGH
Number of Bins: 267 Bin size 10813
Sort data 166.1 MB PDQ memory granted 162.8 MB
Estimated number of table scans 2
PASS #1 c3,c1
PASS #2 c4,c2
Light scans enabled
Scan 2 Sort 5 Build 1 Insert 0 Close 0 Total 8
Completed pass 1 in 0 minutes 8 seconds
Scan 2 Sort 5 Build 1 Insert 0 Close 0 Total 8
Completed pass 2 in 0 minutes 8 seconds
So just a bit too little, but already better
UPDATE STATISTICS:
==================
Table: ebach.t1
Mode: HIGH
Number of Bins: 267 Bin size 10813
Sort data 166.1 MB PDQ memory granted 174.4 MB
Estimated number of table scans 1
PASS #1 c1,c2,c3,c4
Light scans enabled
Scan 4 Sort 8 Build 3 Insert 0 Close 0 Total 15
Completed pass 1 in 0 minutes 15 seconds

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

26

Total Time needed

PDQ with Update Statistics

Table: ebach.t1
Mode: HIGH
Number of Bins: 267 Bin size

10813
Sort data 166.1 MB
PDQ memory granted 174.4 MB
Estimated number of table scans 1
PASS #1 c1,c2,c3,c4
Light scans enabled
Scan 4 Sort 8 Build 3 Insert 0 Close 0 Total

15
Completed pass 1 in 0 minutes 15 seconds

PDQ Memory

Features Enabled

• PDQ can change the number of table scans
needed.

• Use set explain

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

27

A few more things
• External directives
• Fragmentation guidelines
• Avoid round robin fragmentation
• Check for limitations on data types esp. varchar

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

28

Summary
• Get a baseline of your system

• Performance
• SQLs

• Stick to your processes
• Get verification for assumptions

• A few helpful parameters
• DONTDRAINPOOLS
• DS_NONPDQ_MEMORY
• PSORT_NPROCS

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

29

More Info
• An article stating where to find information:

http://www-1.ibm.com/support/docview.wss?uid=swg21250290

• Documentation
http://publib.boulder.ibm.com/infocenter/idshelp/v111/index.jsp?t

opic=/com.ibm.perf.doc/perf.htm

• DCF articles and white papers
• http://www-306.ibm.com/software/sw-

library/en_US/detail/F415342F55896R80.html

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

30

Q&A

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

31

THANK YOU

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

32

Dr. Elisabeth Bach
IBM

elisabeth.bach@de.ibm.com

Session D01
Top Tips learned from
Performance PMRS

