
1

2008 IIUG2008 IIUG Conference

Sensor & Task functions in IDS 11

David Jay
IBM Corporation
Session D12
Tuesday, April 29, 2008 • 4:40 – 5:40 p.m.

2

2

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Topics Covered
• What are Sensors and Tasks in IDS 11?
• How they are instantiated, stored and used
• Common Usage

• Productivity/Performance
• How to build a sensor
• Q&A
• Resources

3

It is also known as the Admin API, or Scheduler API, since there is a scheduler
process that manages the whole thing.

3

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

What are Sensors and Tasks ?

These are functions which are part of the SQL
Administration API, managed within the
sysadmin database.

4

Both types of functions perform the command and also write a result to the
command _history table.

If the function succeeds but the write to the command_history table fails, it will
write a message to the online.log

(It is 2 separate transactions)

4

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Admin functions return A number.

(an integer return status)

Task functions return Text.

(a string which describes the return status)

The Admin API

5

Tasks can automate scheduling or can be set to trigger on a
condition.

Tasks allow you to store results for executed commands in order to
track trends.

5

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

What do Sensors and Tasks do?
• Help the dba to administer one or more IDS 11

instances using a system based on SQL
commands

• Minimize complexity and syntax errors
• These task functions can

• Help manage resources
• Allow on-the-fly configuration changes
• Handle scheduling and running of routines
• Perform system validation
• Help to avoid complex shell scripts and command

lines

6

6

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

What is a Task?

Tasks are functions used to implement an
administrative job or routine. When the task
is run, at a minimum, it will write a completion
status message to the command_history table.

7

7

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

What is a Sensor?

A Sensor is a task which not only implements a
routine and records a command _history
reference, it can also collect and save
information.

8

8

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

3 Main parts of a Task:
• A definition, with command parameters

which are stored as a row in the ph_task
table

• A command function which you run

• A returned integer and lvarchar, providing a
result for the command

9

9

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

If the task is also a sensor...
The task definition in ph_task table will

include:

• A SQL object, such as a stored procedure or
function, to collect the information

• A table definition to create the table that will
hold results for what you collect

• Interval information to determine how and
when the sensor needs to run, and how often
to delete data that has been stored for a while

10

10

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

We need to recognize –

• the elements that form the command syntax

• the defining elements in the PH_TASK table

Creating a Task or Sensor

11

The Command syntax

task ('command')

task ('command', 'argument')

task ('command', size)

task ('command', 'argument', size)

 - size is needed if the command specifies an offset, storage object, or
buffer.

 - size is a number followed by the unit abbreviation, with no space in
between number and unit. (unit options include KB,B,MBGB,TB,PB) .
Default is KB when not specified.

11

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

task ('command')

task ('command', 'argument')

task ('command', size)

task ('command', 'argument', size)

Examples of the command syntax:

12

Check extents,1 == checks extents in the first dbspace.

“Check extents” == with no parameters – checks all the dbspaces.

Check data can only be done with a partnum.

The task and the admin functions are created through a routine called
db_install.sql, which is visible under $INFORMIXDIR/etc/sysadmin/.

If you look at the function definitions in db_install.sql, you will discover
that task functions can handle up to 10 parameters.

12

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

execute function task('check extents‘,1);
execute function task('print error',199);
execute function
 task("alter plog","physdbs","49 MB");
execute function
 task('check data', 2097214);

Command examples:

13

13

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

• These commands can be executed to remote
instances, allowing a DBA to administer
multiple instances through one command
window.

• The SQL API has more than 80 command
variations already.

Usage Notes:

14

Collectively, the sysadmin database contains the tables used by the Scheduler:

Using task or admin commands the administrator can execute functions and
procedures or schedule them to run at predefined times.
There are 7 ‘PH’ Tables altogether that contain and organize the Scheduler
task information.

The results tables have different names. The built-ins that come with the
engine usually have names that start with ‘mon_’ as in ‘monitor’.

The sysadmin tables are created in the rootdbs, and can be moved to a different
dbspace if necessary.

The scripts that create these tables are found in
$INFORMIXDIR/etc/sysadmin.
The definitions can be found in db_install.sql

14

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

The sysadmin database:

• PH_GROUP: scheduler group names
• PH_RUN: how and when it happened
• PH_ALERT: errors, warnings, informational
• PH_THRESHOLD: information about thresholds
 for tasks
• Results: historical data about command execution
• command_history table –list of all commands run from

the API, and the results of the run

15

All task and sensor functions you create will be stored in ph_task. The column
names in green are the fields we can change. On the next couple slides there
are a few other columns that the server updates for us.
tk_description lvarchar
tk_result_table varchar
tk_create lvarchar
tk_execute lvarchar
tk_delete interval day(2) to second
tk_frequency interval day(2) to second (max 99 days)

The tk_result_table column is used only by sensors and the content matches
the table created in tk_create.
When the tk_delete interval is achieved, data is deleted from tk_result_table.

tk_create - The CREATE TABLE statement which will be executed to create
the result table, if needed.
Note: The tk_create column is used by sensors. and as necessary, it is executed
to create the table needed to hold the data for the sensor we create.

15

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

PH_Task table:
This table has 28 columns to describe the parameter
and descriptive information needed for each sensor
or task:

• tk_description -- Description of task
• tk_result_table -- Result table name
• tk_create -- The create table statement
• tk_execute -- The SQL object to execute
• tk_delete -- Interval for deleting data
• tk_frequency -- How often the task runs

16

Tk_id serial
TK_name char(36)
Tk_start_time datetime hour to second – when it
is not a startup sensor
Tk_stop_time datetime hour to second – ignored if is a startup
sensor
tk_type char(18)

Re: tk_type: Sensor = collects info
 Startup Task – a task only executed when the

server starts up
 Startup Sensor – a sensor which is only executed

at server startup.
undocumented -- STARTUP MONITOR -- present on 11.10,

removed after.

16

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

PH_Task table:
• tk_id - Sequential task ID
• tk_name - Unique Task name
• tk_start_time - Starting time of the task
• tk_stop_time - Stop time for a task
• tk_type - Type of Task

TASK
SENSOR
STARTUP SENSOR

17

tk_next_execution datetime year to second
tk_group varchar(128) (ties to ph_group(group_name))

 There are 11 predefined groups:
MISC,DISK,NETWORK,MEMORY,CPU,
TABLES,INDEXES,SERVER,USER,
BACKUP, and PERFORMANCE

 (default is MISC).
tk_enabled boolean
tk_priority integer

17

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

PH_Task table:
• tk_next_execution - next time the task should be

 executed
• tk_group - Group name reference
• tk_enabled - scheduled or not scheduled
 (‘t’ = default)
• tk_priority - Job priority (1-5):
 0=Default
 5=execute first
 1=execute last

18

Tk_sequence integer
Tk_owner integer
Tk_attributes integer
Tk_exec_num integer
Tk_exec_time integer

18

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

ph_task table:
System controlled columns:

• tk_sequence - data collection number
• tk_owner - owner’s thread ID
• tk_attributes - system flags for tracking status
• tk_total_executions - # of times to execute task
• tk_total_time - total time executing this task

19

Before the Admin API came along, the choices were limited to options like the
ones in this slide.

Some Guidelines if you want to use the API tools:

If you would like a graphical interface, consider using OAT – the Open Admin
Tool.

(this requires some knowledge of php and web interfacing components)

If you need a complete Toolbox package for discovery, analysis and response
remediation, consider using Sentinel or Server Studio.

If you need only one tool at a time, consider building the tool with the API

19

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Common Usage
• Tailored scripts for

• Update statistics
• Monitoring disk capacity
• Monitoring user activities
• Maintaining the balance of resource usage

• (e.g., memory, data distribution, locks)

20

An example of what the built-in sensors will do for us.

Over time, our imaginary dba, “Big Chuck”, has been busy trying to fine tune his
ONCONFIG file…

It is not pretty. At least he documents his changes.

20

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

LOGBUFF 32 # Logical log buffer size (Kbytes)
#CLEANERS 1 # Number of buffer cleaner processes
CLEANERS 10 # per tech support, 11/16/07 BC
#SHMVIRTSIZE 8192
#SHMVIRTSIZE 32000 # per tech support, 11/16/07 BC
#SHMVIRTSIZE 148000 # 11/19/07 BC
#SHMVIRTSIZE 100000 # 11/22/07 BC
#SHMVIRTSIZE 64000 # 11/22/07 BC
SHMVIRTSIZE 48000 # 11/19/07 BC
#SHMVIRTSIZE 64000 # 11/19/07 BC
SHMADD 8192
SHMADD 16000 #
#SHMADD 148000 # 11/19/07 BC
#SHMADD 100000 # 11/22/07 BC
#SHMADD 64000 # 11/22/07 BC
SHMADD 48000 # 11/19/07 BC
#SHMADD 64000 # 11/19/07 BC
EXTSHMADD 8192 # Size of new extension shared memory segments

21

21

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

A built-in sensor: mon_config
• ph_task comes with 13 sensors and startup

sensors. One of these is mon_config.

[select * from sysadmin:ph_task]

(Note: The 11.5 release has 16 sensors)

22

22

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

select * from sysadmin:ph_task where
tk_name=‘mon_config’;
tk_id 2
tk_name mon_config
tk_description Collect information about database server's

configuration file (onconfig). Only modified
parameters are collected.

tk_type SENSOR
tk_result_table mon_config
tk_create
create table mon_config (ID integer, config_id integer, config_value

lvarchar(1024));
create view mon_onconfig as select ID ID, cf_name name, config_value

value from mon_config, sysmaster:sysconfig where
mon_config.config_id = sysmaster:sysconfig.cf_id;

Below is sample output from mon_onconfig.
In this output (which is not dramatically readable by itself), we can surmise
that SHMVIRTSIZE has changed twice since the engine was initialized. In a
later example, we can tie in the ph_run output to find out exactly when the
changes happened.

select * from mon_onconfig where name="SHMVIRTSIZE“

id 1
name SHMVIRTSIZE
value 0x0x2000

id 2
name SHMVIRTSIZE
value 0x0x7d00

id 78
name SHMVIRTSIZE
value 0x0x7d00

23

23

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

select * from sysadmin:ph_task where
tk_name=‘mon_config’; (continued)

tk_dbs sysadmin
tk_execute onconfig_save_diffs
...
tk_frequency 1 00:00:00
tk_next_execution 2008-03-13 05:00:00
...
tk_group SERVER
tk_enable t
tk_priority 0

(The ellipsis on the slide above indicates there are a few fields I am not displaying).
Where is the function onconfig_save_diffs defined? ?

It is in $INFORMIXDIR/etc/sysadmin/sch_tasks.sql
(first created when the engine was initialized):

CREATE FUNCTION onconfig_save_diffs(task_id INTEGER, ID INTEGER)
 RETURNING INTEGER
 DEFINE value LVARCHAR(1024);
 DEFINE conf_value LVARCHAR(1024);
 DEFINE conf_id INTEGER;
 LET value = NULL;
 FOREACH select cf_id, trim(cf_effective)
 INTO conf_id, conf_value
 FROM sysmaster:syscfgtab
 FOREACH select FIRST 1 config_value
 INTO value
 FROM sysadmin:mon_config
 WHERE mon_config.config_id = conf_id
 ORDER BY id DESC
 END FOREACH
 IF conf_value == value THEN
 CONTINUE FOREACH;
 END IF
 INSERT INTO mon_config VALUES(ID, conf_id, conf_value);
 END FOREACH
 return 0;
END FUNCTION;

24

Big Chuck notices a bunch of virtual segments, and decides he better get around
to tuning his memory; he would like to use the new scheduler API.

24

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

A Sensor example:
onstat -g seg

IBM Informix Dynamic Server Version 11.10.UC2 -- On-Line -- Up 28 days 07:20:12
-- 36480 Kbytes

Segment Summary:
id key addr size ovhd class blkused blkfree
229378 1382107137 44000000 12189696 292924 R 2973 3
262147 1382107138 44ba0000 8388608 50184 V 2048 0
294916 1382107139 453a0000 8388608 50184 V 2033 15
327685 1382107140 45ba0000 8388608 50184 V 233 1815
Total: - - 37355520 - - 7287 1833

25

What does he have in the tool box already?

The possible groups are:

MISC,DISK,NETWORK,MEMORY,CPU,TABLES,INDEXES,SERVER,US
ER,BACKUP,PERFORMANCE

select * from ph_task where tk_group="MEMORY“

Some things to notice
 our results are going into a table named mon_memory_system
 - the table has no dates
 - if we want dates, we have to do a sql join with the PH_RUN
table, using the tk_id

 - the does have ‘class’, ’size’, ‘used’ and ‘free’ - similar to info from
sysmaster:syssegments

- (class = 2 is the virtual class we are looking for)

25

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

select * from ph_task where
tk_group="MEMORY"

tk_id 8
tk_name mon_memory_system
tk_description Server memory consumption
tk_type SENSOR
tk_sequence 917
tk_result_table mon_memory_system
tk_create
 create table mon_memory_system
 (ID integer, class smallint, size int8, used int8, free int8)

26

Notes:
-the execute statement for collecting data is grabbing from a new table named
sysmaster sysseglst
(on old SMI queries we would have used sysmaster:syssegments)

-It collects 15 days of data before it recycles, and collects every 2 hours.

26

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

select * from ph_task where
tk_group="MEMORY“ (continued)

tk_dbs sysadmin
tk_execute insert into mon_memory_system
select $DATA_SEQ_ID, seg_class, seg_size,
seg_blkused, seg_blkfree FROM
sysmaster:sysseglst
tk_delete 15 00:00:00
..
tk_frequency 0 02:00:00
tk_next_execution 2008-04-28 11:49:28

27

(For space considerations on this slide, I displayed date rather than datetime
value.)
From the datetime references, Chuck was able to determine that he was
averaging
3 virtual segments a day: he was able to correct this by setting
SHMVIRTSIZE from 8192 to 25000.

27

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

select date(a.run_time), b.size, b.used, b.free from
ph_run a, mon_memory_system b where class=2 and
b.id=a.run_id order by 1
(expression) size used free
01/09/2008 8388608 2043 5
01/09/2008 8388608 533 1515
01/09/2008 8388608 2048 0
01/09/2008 8388608 2044 4
01/09/2008 8388608 533 1515
01/09/2008 8388608 2048 0
01/10/2008 8388608 2044 4
01/10/2008 8388608 532 1516
01/10/2008 8388608 2048 0
01/10/2008 8388608 2048 0
01/10/2008 8388608 2045 3
01/10/2008 8388608 531 1517
01/10/2008 8388608 2044 4
01/10/2008 8388608 2048 0
01/10/2008 8388608 532 1516

28

Preliminaries:

 - Only a dba can run the task() and admin() functions.

 - by default, informix is the only user that can connect to the sysadmin database.

 - All task and admin functions are executed against the sysadmin database.

If you need to create a table, use this formula to estimate the amount of disk space
needed:

(# of rows collected) * (size of the row collected) * (the # of records per day) *
(the retention period).

28

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

-Only a dba can run task() and admin().
-By default, only informix user can connect to
sysadmin database.
-All task and admin functions are executed
against the sysadmin database.
-If you are creating tables, make sure you
account for disk space requirements as rows are
collected.

Building your own tools –
Preliminaries:

29

To set up a task, you need to plan the task first. You need to have:
• A description of the task you want to monitor
• The table where you want to store data
• The SQL command, stored procedure, or function to capture data
• Information on when and how often you want the task to run, and how often to
clear the data.

29

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

The Plan

1. Describe it.

2. Define the data table for storage.

3. Create the SQL to capture the data.

4. Determine the frequency.

5. Plug the entries in ph_task.

6. Verify that it works.

30

30

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

1. Describe it

• Monitor disk usage per database and
dbspace.

(DISK or TABLE group ?)

31

31

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Do we have the tool already?
select count(*) from ph_task where
 tk_group="DISK“
 count = 0

select count(*) from ph_task where
 tk_group="TABLES“
 count =3

32

32

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

…ph_task where
tk_group=“TABLES”
mon_command_history
mon_table_names
mon_table_profile

A closer look at ph_task to see what’s in the tables group reveals that
none of these tables appear to relate to what we need.

33

33

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

mon_table_profile contains:
id integer, partnum , nextns , serialval, nptotal,
npused , npdata , lockid , nrows , ucount ,
ocount , pf_rqlock , pf_lockwait , pf_isread,
pf_iswrite, pf_isrwrite, pf_isdelete, pf_bfcread,
pf_bfcwrite, pf_seqscans , pf_dskreads ,
pf_dskwrites

A closer look at mon_table_profile shows it tracks pages and i/o usage, but
nothing we can use.
So, we will want to create our own table for tracking.

34

34

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

2. Define the data table for storage

Track:
• The dbspace by name
• The database by name
• Total space used per database
• Number of extents per database

35

(A sample of what I want to monitor)

35

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

2. Define the data table for storage

dbspace database tot_space no_of_exts
dbs2 stores7 1263 133
rootdbs most 1100 103
rootdbs sysadmin 2232 212
rootdbs sysmaster 1388 137
rootdbs sysuser 1072 102
rootdbs sysutils 1136 114

36

36

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

2. Define the data table for storage

create table mon_dbs_use (
ID integer,
dbspace char(10),
database char(10),
tot_space integer,
no_exts integer)

37

This is the query which I know will capture the data visible in the previous slide.

37

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

3. Create the SQL to capture the data
select distinct

substr(DBINFO("DBSPACE",partnum),1
,10) DBSpace, dbsname[1,10] Database,
sum(pe_size) tot_space, count(*)
no_of_exts

from sysmaster:sysptnext,
sysmaster:systabnames

where pe_partnum = partnum
and tabname != "TBLSpace"
group by 1,2

38

If this were a regular sensor, I would specify ‘SENSOR’, and a frequency interval
at which to run.

38

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

4. Determine the frequency

• STARTUP SENSOR

• Delete every 90 days

39

39

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

5. Insert the entries in ph_task

Insert into ph_task

(tk_name, tk_description, tk_type,

tk_result_table, tk_create, tk_dbs,

tk_execute, tk_delete, tk_frequency,
tk_group, tk_enable)

VALUES …

40

1. When inserting your sql into the tk_execute column, if you have too
much hardship getting the

SQL expression(in blue) to work because of misplaced quotes or other
errors, create the sql as

a standalone function, then insert the name of the function to be called in
the tk_execute column.

2. Always include a $DATA_SEQ_ID in your tk_execute process, and an
integer ID column in your result

table, so you can keep track of the run_task sequence.

40

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

5. Insert the entries in ph_task (continued)
VALUES
('mon_dbs_use',
'Monitor disk usage per database and dbspace',
'STARTUP SENSOR','mon_dbs_use',
'create table mon_dbs_use (ID integer, dbspace
char(10),database char(10), tot_space integer,no_exts
integer)','sysadmin','insert into mon_dbs_use select
$DATA_SEQ_ID, distinct substr(DBINFO(DBSPACE,par
tnum),1,10) DBSpace, dbsname[1,10]
Database,sum(pe_size) tot_space, count(*) no_of_exts from
sysmaster:sysptnext, sysmaster:systabnames where
pe_partnum = partnum and tabname != TBLSpace group by
1,2','90 00:00:00', '0 00:01:00','DISK','t')

41

When out task is inserted, it is also executed in order to create the result table.

In our first verification step, we are verifying insert syntax…
We should get back the row that we just put in:
select * from ph_task where tk_name="mon_dbs_use“;

41

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

6. Verification

 1. Verify our entry in ph_task

 select * from ph_task where tk_name="mon_dbs_use“

42

Note the tk_id assigned for our serial column: 14. (We will use this for the next
verification step.)

42

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

6. Verification
1. Verify the entry in Ph_task

 select * from ph_task where tk_name="mon_dbs_use“
tk_id 14
tk_name mon_dbs_use
tk_description Monitor disk usage per database and dbspace
tk_type STARTUP SENSOR
tk_sequence 5
tk_result_table mon_dbs_use
tk_create create table mon_dbs_use (ID integer,
 dbspace char(10),database char(10), tot_space
 integer,no_exts integer)
 tk_dbs sysadmin …

43

2. Verify the existence of the result table:
 select * from mon_dbs_use;

If the table does not exist or it has no rows, we have a syntax error in the ph_task
table.

43

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

6. Verification
2. Verify the existence of the result table:

 select * from mon_dbs_use;

3. If our result table is empty, check ph_run for errors:

 select * from ph_run where run_task_id=14

44

Selecting from the ph_run table for our task id, we find that there is a
-201 (syntax error) in our executed statement (tk_execute has a problem).

44

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

6. Verification
 select * from ph_run where run_task_id=14;

run_id 4760
run_task_id 14
run_task_seq 1
run_retcode -201
run_time 2008-04-17 10:32:49
run_duration 0.021375137579
run_ztime 1205400729
run_btime 1205400729
run_mttime 1205767969

45

Be careful with the insertion clauses. Use double quotes to bracket the whole
phrase,
single quotes for the parts inside.

45

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

(fix for the values clause used on step 5)
update ph_task set tk_execute= “insert into
mondbs_use select distinct $DATA_SEQ_ID,
substr(DBINFO('DBSPACE',partnum),1,10)
DBSpace, dbsname[1,10] Database,
sum(pe_size) tot_space, count(*) no_of_exts
from sysmaster:sysptnext,
sysmaster:systabnames where pe_partnum =
partnum and tabname != 'TBLSpace' group by
2,3" where tk_name="mon_dbs_use"

46

After an update for our startup sensor, our tk_execute column is now fixed – but
the task is not going to run automatically, since it is not newly instantiated.

To verify it at this point, we have to bounce the engine.
After the bounce, a check of the ph_run table will now show a 0 return code.

46

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

6. Verification

select * from ph_run where run_task_id=14;
run_id 4775
run_task_id 14
run_task_seq 4
run_retcode 0
run_time 2008-04-17 11:32:11
run_duration 0.143057564702
run_ztime 1205774878
run_btime 1205774878
run_mttime 1205774951

47

And our mon_dbs_use table has data..

47

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

6. Verification

select * from mon_dbs_use;

id dbspace database tot_space no_exts
 1 dbs2 stores7 1263 133
 1 rootdbs most 1100 103
 1 rootdbs sysadmin 1496 147
 1 rootdbs sysmaster 1388 137
 1 rootdbs sysuser 1072 102
 1 rootdbs sysutils 1136 114

48

48

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Q&A
?

49

49

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Resources
• IBM Informix Dynamic Server Administrator’s

Reference
• IBM Informix Guide to SQL: Syntax
• "Informix Dynamic Server 11:Advanced

Functionality for Modern Business" a redbook
located at http://www.redbooks.ibm.com/abstracts/sg247465.html?Open&pdfbookmark

• Certification Tutorial, part 2.
• Focused summary on monitoring at
 http://www.serverstudio.com/

50

50

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

David Jay
 IBM Corporation
djay@us.ibm.com

Session D12
Sensor & Task functions in IDS 11

