
1

2008 IIUG2008 IIUG Conference

Using SQLIDEBUG to Help
Streamline Your Application

Mike Lowe
IBM Data Management

Session Code: D15
Wednesday, April 30, 2008 • 13:00 – 14:00

2

2

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Agenda
• Client-server communications
• Communication stream between client and server
• SQLIDEBUG
• SQLIPRINT
• Environment variables affecting communication
• Some home-grown scripts
• Case study

In this session we will cover some basic concepts of the client-server
communication process, then delve deeper into the details of those
communications.
We will cover the built-in SQLIDEBUG feature and how to use it, then discuss the
companion tool SQLIPRINT.
We will also then discuss some of the environment variables which can be used to
affect the efficiency of client-server communications.
Finally, we will look at some home-grown scripts which will help you understand
exactly what is being sent to the server from the client, and look at a case study
where these scripts were used on a client application.

3

3

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Client-Server Communications
Client

Database Server

poll
thread

sqlexec
thread

Client-to-Server
Traffic

Server-to-Client
Traffic

request

This slide depicts the flow of client-server communications traffic.

4

4

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Client-Server Architecture

Communication
SQLI
SQL Calls
Application Code

Ap
pl

ic
at

io
n

Pr
og

ra
m

The rest of the database
server

SQLI

Communication

D
at

ab
as

e
Se

rv
er

tcp, shared memory, etc.

The overall architecture looks something like what is depicted on this slide.

5

5

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

The Communication Layer

Communication (ASF)
SQLI
SQL Calls
Application Code

Ap
pl

ic
at

io
n

Pr
og

ra
m

The rest of the database
server

SQLI

Communication (ASF)

D
at

ab
as

e
Se

rv
er

tcp, shared memory, etc.

•Association Services Facility
•Physical communications layer

•Network, shared memory, pipes

The Communication layer is the physical communication layer, consisting of
whatever components are necessary for the type of communication protocol
involved – TCP/IP, shared memory, stream pipes, etc.

6

6

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

SQLI Layer

Communication (ASF)
SQLI
SQL Calls
Application Code

Ap
pl

ic
at

io
n

Pr
og

ra
m

The rest of the database
server

SQLI

Communication (ASF)

D
at

ab
as

e
Se

rv
er

tcp, shared memory, etc.

•SQL Interface
•Prepares packets for

communication between
client and server

The SQLI layer, or SQL Interface layer, is where we will focus in this session.
The SQLI layer takes the SQL calls from the application code and prepares packets
for communication between the client and the server.

7

7

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Communication Stream
• Server sends client version information
• Client sends server environment information
• Server acknowledges
• Client sends connection and database request
• Server responds
• Client sends prepare request
• Server describes format of results to be returned

The communication stream consists of a lot of message traffic between the client
and the server.
The typical communication stream looks something like what is depicted in this and
the following slide.

8

8

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Communication Stream (cont.)
• Client requests cursor be opened
• Server acknowledges
• Client sends fetch request
• Server returns rows
• Server sends “No More Rows”
• Client requests cursor be closed
• Server closes connection

Most of the message traffic consists of one message and one response.

9

9

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

SQLIDEBUG
• Built-in engine feature
• Captures SQLI communication between client and

server for a session
• Set as environment variable
• Output to disk file in hexadecimal or binary format
• Debug tool only

• Use for single session
• Do not use in production environment

SQLIDEBUG is a built-in engine feature that lets us capture the SQLI layer
communications between a client and a server.
This capture is enabled by setting the SQLIDEBUG environment variable.

10

10

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Using SQLIDEBUG
• Syntax:

SQLIDEBUG=output_type:path

• Output Type
• 1 = hexadecimal
• 2 = binary

• Path
• Path for location of output file
• Specifies base name of output file

This slide describes the syntax for setting SQLIDEBUG.

11

11

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Using SQLIDEBUG (Example)
• Set SQLIDEBUG environment variable

export SQLIDEBUG=2:/tmp/sqliout

• Run application
• Unset SQLIDEBUG environment variable
• Locate output file for this session

• In /tmp directory
• File named sqliout_session-pid

To use SQLIDEBUG, set the SQLIDEBUG environment variable as shown in the
slide, run the application, and then unset SQLIDEBUG.

12

12

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

SQLIPRINT
• Converts SQLI binary output to ASCII
• Part of Client SDK package
• Installed in $INFORMIXDIR/bin

• UNIX/Linux
• sqliprint

• Windows
• sqliprt.exe

• Syntax: sqliprint [-options] -o output_file input_file

SQLIPRINT is the tool that converts the binary output from SQLIDEBUG to ASCII.
It is part of the Client CSDK package.

13

13

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

SQLIPRINT Options
• -summary – print summary information at the end
• -stmt_stat – print statement stats grouped by SQL
• -per_thread – statement stats per thread
• -cmd_time – print timing info for each command
• -min – only print minimum information
• -tuple – hex values of TUPLES in PUT and FETCH
• -blob – hex values of BLOBS in PUT and FETCH
• -udt –hex values of Fixed/Variable Binary

This slide lists some of the options available with sqliprint.

14

14

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

The Code
DATABASE wisc_db
MAIN
 DEFINE OneK RECORD LIKE onektup.*
 DEFINE SqlTxt CHAR(100)
 DEFINE OnePct INT

 LET SqlTxt = "SELECT * FROM onektup WHERE onepercent = ?;“
 LET OnePct = 10

 PREPARE SqlStmt FROM SqlTxt

 DECLARE Cur10 CURSOR FOR SqlStmt
 OPEN Cur10 USING OnePct
 FETCH Cur10 INTO OneK.*
 CLOSE Cur10
 FREE Cur10
END MAIN

This slide shows a very simple 4GL program that we will use to explore the SQLI
communications stream in the following slides.

15

15

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

SQLIPRINT Output (1 of 9)
SQLIDBG Version 1
S->C (4) Time: 2008-03-07 06:00:16.61066

SQ_INTERNALVER
Internal Version Number: 316

...
C->S (260) Time: 2008-03-07 06:00:16.61264

SQ_INFO
INFO_ENV

Name Length = 12
Value Length = 172
"DBTEMP"="/tmp“
"SHELL"="/bin/ksh“
"SUBQCACHESZ"="10“
"PATH"=".:/opt/informix/bin:usr/local/bin:/usr/bin: ... “
"NODEFDAC"="no“

INFO_DONE
SQ_EOT

S->C (2) Time: 2008-03-07 06:00:16.61347
SQ_EOT

This is the first part of the output from sqliprint.

16

16

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

SQLIPRINT Output (2 of 9)
C->S (8) Time: 2008-03-07 06:00:16.61367

SQ_CONNECT

C->S (16) Time: 2008-03-07 06:00:16.61372
SQ_DBOPEN

 "wisc_db" [7]
NOT EXCLUSIVE

SQ_EOT

S->C (28) Time: 2008-03-07 06:00:16.61472
SQ_DONE

...
SQ_COST

estimated #rows: 1

estimated I/O..: 1
SQ_EOT

Next we get a connect and open request for the wisc_db database, and the server’s
acknowledgment.

17

17

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

SQLIPRINT Output (3 of 9)
C->S (56) Time: 2008-03-07 06:00:16.61566

SQ_PREPARE
values: 1

CMD.....: "SELECT * FROM onektup WHERE onepercent = ?;" [43]

SQ_NDESCRIBE

SQ_WANTDONE

SQ_EOT

Then the client sends a request to prepare the SQL select statement.

18

18

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

SQLIPRINT Output (4 of 9)
S->C (418) Time: 2008-03-07 06:00:16.61670

SQ_DESCRIBE
Stmt Type...........: 2
Server Stmt Id......: 0
Estimated Cost......: 0
Size of output tuple: 208
output fields.....: 16
Size of string table: 148
0) Field 'unique1‘

Index into string table: 0
Starting offset in tuple: 0
Type....................: INT; NOT NULLABLE
Length : 4 (0x4)

1) Field 'unique2‘
Index into string table: 8
Starting offset in tuple: 4
Type....................: INT; NOT NULLABLE
Length : 4 (0x4)

...

Now the server describes the data stream that will be returned from the prepared
SQL statement (SQ_DESCRIBE).

19

19

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

SQLIPRINT Output (5 of 9)
...
14) Field 'stringu2‘

Index into string table: 131
Starting offset in tuple: 104
Type....................: CHAR; NOT NULLABLE
Length : 52 (0x34)

15) Field 'string4‘
Index into string table: 140
Starting offset in tuple: 156
Type....................: CHAR; NOT NULLABLE
Length : 52 (0x34)

SQ_DONE
Warning..: 0x0
rows...: 0
rowid....: 0
serial id: 0

SQ_COST
estimated #rows: 1
estimated I/O..: 1

SQ_EOT

This slide shows the end of the SQ_DESCRIBE section sent from the server to the
client.

20

20

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

SQLIPRINT Output (6 of 9)
C->S (44) Time: 2008-03-07 06:00:16.61742

SQ_ID
0

SQ_CURNAME
 "i00088763w2rvucw5a" [18]

SQ_BIND
values: 1

0) Type.....: INT; NULLABLE
Indicator: NOT NULL

Precision: 0xa00
Data.....: 10

SQ_OPEN
SQ_EOT

S->C (2) Time: 2008-03-07 06:00:16.63967

SQ_EOT

Now the client sends the variable data for the SQL statement to the server.

21

21

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

SQLIPRINT Output (7 of 9)
C->S (12) Time: 2008-03-07 06:00:16.63978

SQ_ID
0

SQ_NFETCH
Tuple buffer size: 4096
Fetch Array size: 0

SQ_EOT

S->C (3890) Time: 2008-03-07 06:00:16.72275

SQ_TUPLE
Warnings..: 0

Tuple length: 208

SQ_TUPLE

Warnings..: 0

Tuple length: 208

...

Once the cursor is opened, we tell the server we want it to start returning our data.

22

22

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

SQLIPRINT Output (8 of 9)

...

SQ_TUPLE

Warnings..: 0

Tuple length: 208

SQ_DONE
Warning..: 0x0

rows...: 250000

rowid....: 0

serial id: 0

SQ_COST
estimated #rows: 10000

estimated I/O..: 35281

SQ_EOT

Here we see that the server has reached the end of the data, and sends the
SQ_DONE message to the client.

23

23

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

SQLIPRINT Output (9 of 9)
C->S (8) Time: 2008-03-07 06:00:16.72344

SQ_ID
0

SQ_CLOSE
SQ_EOT

S->C (2) Time: 2008-03-07 06:00:16.72380

SQ_EOT

Finally, we close the cursor, identifying it by its statement ID of 0.

24

24

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

SQLIPRINT– Summary: Times
>>>>>>>>>>>>>>>>>> SUMMARY INFORMATION <<<<<<<<<<<<<<<<<

>>>>>>>>>>TOTAL ELAPSED CLOCK TIME (sec): 0.113137

>>>>>>>>>>CLIENT ELAPSED CLOCK TIME (sec): 0.003860

>>>>>>>>>>SERVER+NETWORK CLOCK TIME (sec): 0.109483

By using the “-summary” option, we get a synopsis of communications traffic listed
at the bottom of the output.

25

25

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

SQLIPRINT – Summary: C->S
FROM C->S
Msg occured Total Avg Min Max
--
SQ_PREPARE 1 0.001041 0.001041 0.001041 0.001041
SQ_CURNAME 1
SQ_ID 3
SQ_BIND 1
SQ_OPEN 1 0.022241 0.022241 0.022241 0.022241
SQ_NFETCH 1 0.082978 0.082978 0.082978 0.082978
SQ_CLOSE 1
SQ_EOT 7
SQ_NDESCRIBE 1
SQ_DBOPEN 1 0.001002 0.001002 0.001002 0.001002
SQ_WANTDONE 1
SQ_INFO 1
SQ_CONNECT 1
SQ_PROTOCOLS 1
--

The second section is a summary of the messages sent from the client to the
server.

26

26

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

SQLIPRINT – Summary: S->C
FROM S->C

Msg occured Total Avg Min Max

--

SQ_DESCRIBE 1 0.000720 0.000720 0.000720 0.000720

SQ_EOT 6

SQ_TUPLE 18

SQ_DONE 2

SQ_COST 2

SQ_INTERNALVER 1

SQ_PROTOCOLS 1

--

The third section is also a summary of types of messages sent, this time from the
server to the client, along with some timings.

27

27

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

SQLIPRINT – Summary: Commands
===

 COMMAND TEXT INFORMATION (first 99 are listed)

a(b) CMD[##]= ' first 60 bytes of cmd text ‘

where a = 'P'repare, or 'N'ot prepared, and b = length of command string

P(43) CMD[0]='SELECT * FROM onektup WHERE onepercent = ?;‘

Section four is a listing of up to first 99 SQL commands sent and whether they were
prepared or not.

28

28

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

SQLIPRINT – Summary: Efficiency
===
 Fetch Array feature not used
 OPTOFC feture not used
 Number of open/reoptimzation encountered = 0
 Number of C->S message send = 8
 Number of S->C message send = 8
 Number of prepare statements encountered = 1
 Number of execute statements encountered = 0
 Number of singleton select encountered = 0
 Number of open cursor encountered = 1
 Number of close cursor encountered = 1
 Number of non-blob put = 0, averge size of each put is 0.000000
 Number of non-blob fetch = 18, averge size of each fetch is 208.000000
 Number of blob put = 0, averge size of each put is 0.000000
 Number of blob fetch = 0, averge size of each fetch is 0.000000
>>>>>>>>>>>>>>> END SUMMARY INFORMATION <<<<<<<<<<<<<<<

The fifth section lists, among other items, the total number of C->S messages and
total number of S->C messages sent.

29

29

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Environment Variables
• OPTOFC
• OPTMSG
• IFX_DEFERRED_PREPARE
• IFX_AUTOFREE
• FET_BUF_SIZE

There are a number of environment variables that can be used to affect the number
of communications packets transmitted.

30

30

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

OPTOFC
• OPTimize Open, Fetch, Close

export OPTOFC=1

• Reduces client server round-trip messages by two
• Does not open cursor until first fetch
• Automatically closes cursor at last fetch
• Requires that SELECT is prepared
• Improves performance for active client-server

environments

Setting OPTOFC will reduce the number of messages by two because the cursor is
not opened until the first fetch is sent, and the cursor is automatically closed at the
last fetch.

31

31

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

OPTMSG
• Enables optimized message transfers

SELECT VERSION FROM MYCLOCK;
SELECT CURRENT YEAR TO FRACTION(3) FROM MYCLOCK;

SELECT VERSION FROM MYCLOCK;

SELECT CURRENT YEAR TO FRACTION(3) FROM MYCLOCK;

$ export OPTMSG=1

Setting OPTMSG will combine message traffic when possible.

32

32

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

IFX_DEFERRED_PREPARE
• Allows the PREPARE statement to be executed

just before the cursor is opened
• Reduces network messages

export IFX_DEFERRED_PREPARE=1

• Improves performance for active client-server
environments

Setting IFX_DEFERRED_PREPARE will allow the prepare statement to be
executed just before the cursor is opened.

33

33

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

IFX_AUTOFREE
• Cursor automatically freed when cursor is closed
• Reduces network messages
• Provides more efficient client-server

communications

Setting IFX_AUTOFREE will automatically free the cursor when it is closed.

34

34

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

FET_BUF_SIZE
• Determines size in bytes of fetch buffer used

internally for tuples
• Default size 4096 bytes
• Max size 32767 bytes
• Set as environment variable

export FET_BUF_SIZE=32767

• Use when transferring many large rows
• Requires sufficient memory

The FET_BUF_SIZE environment variable sets the size of the client-side
communications buffer.

35

35

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Example - FET_BUF_SIZE Effect
• Message Traffic – default values

Number of C->S message send = 13904
Number of S->C message send = 13903

• Message Traffic – FET_BUF_SIZE=32767
Number of C->S message send = 1608
Number of S->C message send = 14345

This slide shows the effect of FET_BUF_SIZE on client-server communications.

36

36

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

SQLHOSTS Option – Buffer Size
• Specifies size of communication buffer in bytes
• Applies to every session
• Must have sufficient memory
• Subject to limitations of operating system
• Set as option in sqlhosts file

DbserverName Protocol Hostname ServiceName

griffin_tcp onsoctcp griffin griffin_tcp

Option
s

b=3276
7

Another often overlooked possibility in tuning client-server communications is the
optional buffer size parameter in the SQLHOSTS file.

37

37

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Communication Effect
• Message Traffic – default values

Number of C->S message send = 13904
Number of S->C message send = 13903

• Message Traffic – FET_BUF_SIZE=32767
Number of C->S message send = 1608
Number of S->C message send = 14345

• Message Traffic – FET_BUF_SIZE and b=32767
Number of C->S message send = 1669
Number of S->C message send = 1674

This slide shows the effect of the size of the communications buffer on message
traffic.

38

38

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Some Home-Grown Scripts
• Suite of home-grown shell scripts designed to help

extract and parse data from SQLIPRINT output
• Used at client site to help streamline application
• NOTE:

• Neither endorsed nor supported by IBM
• Distributed on an as-is basis

In this part of the session we’ll talk about a suite of scripts that were written to better
understand the information produced by sqliprint.

39

39

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

The Scripts
• do_sqli.sh
• strip_sqli.sh
• trace_sqli.sh
• extract_sqli.sh
• parse_sqli.sh

This is a list of the shell scripts in the suite.

40

40

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

The Scripts – do_sqli.sh
• A menu that drives other scripts
• Requires file named sqlifiles

• Contains list of output files from sqliprint

 SQLI File Processing Menu

 1) Recover from ".bkup" files
 2) Strip the extra junk
 3) Edit the files
 4) Trace the SQL commands (optional)
 5) Extract the SQL commands
 6) Parse the command file into individual SQL files

 Make Selection or 'q' to quit:

The do_sqli.sh script is a menu that drives the rest of the process (shown above).

41

41

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

The Scripts – strip_sqli.sh
• Makes backup copy of sqliprint output file
• Strips unnecessary output from sqliprint output file
S->C (2052)
 SQ_TUPLE
 # Warnings..: 0
 Tuple length: 80
 SQ_TUPLE
 # Warnings..: 0
 Tuple length: 80
 ...

 SQ_TUPLE
 # Warnings..: 0
 Tuple length: 80
 SQ_DONE
 ...

S->C (2052)
 SQ_TUPLE
 # Warnings..: 0
 Tuple length: 80
 SQ_DONE
 Warning..: 0x0
 # rows...: 23
 rowid....: 279
 serial id: 0
 SQ_COST
 estimated #rows: 8
 estimated I/O..: 2
 SQ_EOT

The first thing strip_sqli.sh (menu step 2) does is make a backup copy of the
sqliprint output file, giving it a “.bkup” file extension.
Next, as we can see in the code samples, it removes repeating SQ_TUPLE groups
to shorten the file and make it more manageable.

42

42

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

The Scripts – trace_sqli.sh
• A debugging file
• Replaces ‘?’ placeholders with actual data values
• Keeps track of cursor opens and closes
• Reports any cursors left open
• Optionally produces debugging and tracing logs

The trace_sqli.sh (menu step 4) script lists the SQL commands, their corresponding
server statement IDs, and substitutes actual data values for the ‘?’ placeholders.
It also keeps track of the number of cursors opened and closed and reports on the
number left open.

43

43

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

The Scripts – extract_sqli.sh
• Extracts SQL commands from sqliprint output
• Replaces ‘?’ placeholders with actual data values
• Same as trace_sqli.sh but without debugging and

log files

The extract_sqli.sh (menu step 5) script is the same as the trace_sqli.sh (menu step
4) script, but without the TRACE and DEBUG options.
It produces an output file named <file>.extract, which is a list of the SQL commands
with actual data values substituted for the ‘?’ placeholders.

44

44

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

The Scripts – parse_sqli.sh
• Creates individual files for each SQL command
• Requires output file from extract_sqli.sh

The parse_sqli.sh (menu step 6) script takes the SQL commands listed by the
extract_sqli.sh (menu step 5) process and places each command into a separate
SQL file.

45

45

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Case Study
• Scenario

• Reservation system
• Written in object-oriented language
• Session memory climbing steadily

• 3MB session memory after 5 reservations
• Solution

• SQLIDEBUG
• Custom scripts

I wrote these scripts because I was working on a project where the application
developers were writing a reservation system.

46

46

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Case Study – What I Found

prepare: ID 1

COMMAND#: 9 ID 1

"SELECT agy_id, agy_agency_code, ...

 FROM agency WHERE agy_agency_code = ?" [129];

prepare: ID 2

COMMAND#: 10 ID 2

"SELECT agy_id, agy_agency_code, ...

 FROM agency WHERE agy_agency_code = ? {FOR UPDATE}" [140];

prepare: ID 3

COMMAND#: 11 ID 3

"INSERT INTO agency (agy_id, agy_agency_code, ...)

 VALUES (?,?,?,?,?,?,?)" [121];

The first of these was revealed by the output of the scripts, and the slide shows how
I was able to identify this problem.

47

47

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Case Study – What I Found

prepare: ID 4

COMMAND#: 12 ID 4

"UPDATE agency SET (agy_fax_num, ..., agy_rating) = (?,?,?,?,?)

 WHERE agy_agency_code = ?" [114];

prepare: ID 5

COMMAND#: 13 ID 5

"DELETE FROM agency WHERE agy_agency_code = ?" [44];

We also saw UPDATE and DELETE statements being prepared against the agency
table.

48

48

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Case Study – What I Found

 ID 4 release

 ID 3 release

 ID 1 close

 ID 1 release

 ID 2 close

 ID 2 release

 ID 5 release

Right after the 5 statements were prepared, they were closed and released.

49

49

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

prepare: ID 1

COMMAND#: 14 "SELECT agy_id, agy_agency_code, ...“

prepare: ID 2

COMMAND#: 15 "SELECT agy_id, agy_agency_code, ... {FOR UPDATE}"

prepare: ID 3

COMMAND#: 16 "INSERT INTO agency (agy_id, agy_agency_code, ...)”

prepare: ID 4

COMMAND#: 17 "UPDATE agency SET (agy_fax_num, ...) = (?,?,?,?,?)”

prepare: ID 5

COMMAND#: 18 "DELETE FROM agency WHERE agy_agency_code = ?"

Case Study – What I Found

Immediately following the release, I found another set of prepare statements.

50

50

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Case Study – What I Found
• Looped through same set of prepares total of 5

times

• Never used prepared cursors in application

In fact, this 5-statement set of prepares was done 5 times.

51

51

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

What Else I Found

 ID 11 cursor: icur_933

 ID 11 open

 ID 11 fetch

 ID 11 close

 ID 11 close

 ID 11 release

 ID 0 close

 ID 0 release

 ID 12 close

 ID 12 release

 ID 8 close

 ID 8 release

There are 18 open cursors left.

What I also found was that at the end of each reservation cycle, 18 cursors were left
open.

52

52

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

So …
• Use SQLIDEBUG to capture client-server

communications
• Use SQLIPRINT to convert binary SQLIDEBUG

output to ASCII
• Use scripts to find out what is really going on

So what we find is that we can use the SQLIDEBUG and sqliprint process, in
conjunction with a fairly simple suite of scripts, to help us streamline our application
by eliminating unnecessary communication, and even identifying certain types of
problems with program logic.

53

53

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Questions?

54

54

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Thank You!

55

55

 2008 IIUG Informix Conference The Power Conference
For Informix Professionals

Mike Lowe
IBM

mike.lowe@us.ibm.com

Session D15
Using SQLIDEBUG to Help
Streamline Your Application

