
®

© 2009 IBM Corporation

Section 1

Introduction to Compression and Storage
Optimization

2

What is Compression?

Ability to store data rows in compressed format on disk

Saves up to 90% of row storage space jenom teoreticky !!

Ability to estimate possible compression ratio

Fits more data onto a page

Fits more data into buffer pool

Reduces logical log usage

Less I/O for data scans… faster scans

Less I/O for database backups… faster backups

Compression Concepts

Lempel-Ziv (LZ) based algorithm – static dictionary, built by random
sampling

Frequently repeating patterns replaced with 12-bit symbol numbers

Any byte that does not match a pattern is also replaced with a 12-bit
reserved symbol number

Patterns can be up to 15 bytes long

Max possible compression = 90% (15 bytes replaced with 1.5 bytes =
12 bits)

Compression Concepts – functional example

Compression Symbols

12-bits means 4,096 symbols

–256 reserved symbols for bytes that match no pattern

–3,840 pattern symbols

Patterns > 7 bytes use up two symbol numbers

Thus not all patterns can be compressed

Dictionary tries to capture the “best” patterns (frequency x length)

Non-matching bytes grow by 50% (8 bits replaced by 12 bits)

6

What is Storage Optimization?

Ability to consolidate free space in a table or fragment to the end

Consolidated data means better clustering and less I/O

Ability to return this free space to the dbspace

Space returned can then be used by any table in the dbspace

Better space utilization

Benefits – data affects

Data with frequently repeating long patterns is the most compressible

–Long runs of 0’s or blanks are very compressible

Noise-like data is poorly or not at all compressible:

–Encrypted data

–Data already compressed by another algorithm

–Data without long repeating patterns

Avoid putting a “noise-like” column between other columns that have
frequent patterns – disrupts potential column-spanning patterns

Benefits – performance impact

I/O-bound workloads

–Compression may improve performance by reducing I/Os (both data
page and logical log)

–More data fits on a page, so more in buffer pool

–Log records are smaller, so less logging

For CPU-bound workloads

–Additional CPU used to compress and expand rows

–Should not be a large impact

Benefits – summary

Compression and Storage Optimization can save disk space and thus
money

For I/O-bound workloads Compression can also improve performance

Compression reduces logical logging

Compression fits more data into the buffer pool

Storage Optimization allows space saved by compression to be
reclaimed from tables and table fragments

Interoperability – CDC (DataMirror)

CDC (Change Data Capture - DataMirror)

–Compression of targets is a function of what the target database
supports and what use specifies

–Compressed tables/fragments are uncompressed before being sent to
the target database

Interoperability – ER

ER

–Compression status of tables is independent between source and
target, specified by user

Interoperability – HDR

HDR

–Tables will be compressed on secondary if they are compressed on
primary

Interoperability – OAT

OAT – Open Admin Tool

–Compression and Storage Optimization can be managed via the OAT
graphical interface

Restrictions – things that cannot be compressed

Out-of-row data (i.e. LOB data)

Indices (both attached and detached index pages) – 12.10

System catalog tables

Temporary tables

Internal partition tables (i.e. database tblspace, tblspace tblspace)

Compression dictionary tables

Tables in the following databases:
–sysuser

–sysmaster

–sysutils

–syscdr

–syscdcv1

Virtual-table interface tables

Regular tables with less than 2000 rows

Příklad

IIBM Informix
Dynamic
Server
Version
11.50.FC6
-- On-Line --
Up 00:20:40
-- 1887840
Kbytes

Dbspaces

address
number
flags
fchunk
nchunks
pgsize flags
owner
name

afa72028
1
0x40001 1
1 2048
N B
informix
rootdbs

afa72990
2
0x40001 2
1 2048
N B
informix
dat1_2k

afa72b28
3
0x40001 3
1 2048
N B
informix
dat2_2k

afa72cc0
4
0x40001 4
1 16384
N B
informix
dat1_16k

afa72e58
5
0x40001 5
1 16384
N B
informix
dat2_16k

b0aef028
6
0x42001 6
1 16384
N TB
informix
tmp1_16k

b0aef1c0
7
0x42001 7
1 2048
N TB
informix
tmp1_2k

 7 active,
2047
maximum

Chunks

address
chunk/dbs
offset size
free
bpages
flags
pathname

afa721c0
1 1 0
262143
154642
PO-BD
/Data/informi
x/11.50/Root
DBS

b0aef358
2 2 0
262144
258995
PO-BD
/Data/informi
x/11.50/dat1
_2k

b0aef548
3 3 0
262144
258995
PO-BD
/Data/informi
x/11.50/dat2
_2k

b0aef738
4 4 0
32768
31751
PO-BD
/Data/informi
x/11.50/dat1
_16k

b0aef928
5 5 0
32768
31751
PO-BD
/Data/informi
x/11.50/dat2
_16k

b0aefb18
6 6 0
32768
32715
PO-B-
/Data/informi
x/11.50/tmp1
_16k

b0aefd08
7 7 0
262144
262091
PO-B-
/Data/informi
x/11.50/tmp1
_2k

 7 active,
32766
maximum

dbaccess - -<<!

drop database pomyk;

create database pomyk with log;

!

export FET_BUFF_SIZE=32000

time dbaccess pomyk tab

--2k

drop table fr1_2k;

create raw table fr1_2k (a int, b lvarchar(400), c date)

 fragment by round robin

partition p1 in dat1_2k,

partition p2 in dat2_2k;

load from fr.unl insert into fr1_2k;

alter table fr1_2k type (standard);

-- 16k

drop table fr1_16k;

create raw table fr1_16k (a int, b lvarchar(400), c date)

 fragment by round robin

partition p1 in dat1_16k,

partition p2 in dat2_16k;

load from fr.unl insert into fr1_16k;

alter table fr1_16k type (standard) A JAK TO DOPADLO ?

®

© 2009 IBM Corporation

Section 2

Using Compression and Storage
Optimization Commands

Admin API interface

All compression and storage optimization operations are invoked via
the IDS Admin API built-in UDRs (sysadmin database)

–execute function sysadmin:task(…);

–execute function sysadmin:admin(…);

Example
–execute function sysadmin:task(“table compress repack shrink”,
“table_name”, “database_name”, “owner_name”);

Enables OAT graphical interface

Enables remote execution (DBA does not need to log directly in to the
target machine)

Estimating compression

The expected compression ratio of a table or fragment can be predicted
with reasonable accuracy

–estimates the compression ratio a brand-new dictionary could get

–if already compressed, calculates the current compression ratio (else 0)

–also shows the estimated gain to be had by making a new dictionary (difference
between first and second estimates)

execute function sysadmin:task|admin(“table

estimate_compression”,“table_name”,”database_name”,”owner_na

me”);

execute function sysadmin:task|admin(“fragment

estimate_compression”,“partnum_list”);

Using compression – create_dictionary

Creates a compression dictionary

Marks the table/fragment as compressed

Any rows inserted or updated after creation will be compressed

Previously existing rows will not be compressed

A subsequent dummy update will compress the rows

execute function sysadmin:task|admin(“table

create_dictionary”,”table_name”,“database_name”,”owner_name”

);

execute function sysadmin:task|admin(“fragment

create_dictionary”,“partnum_list”);

Using compression – compress

Does an implicit create_dictionary if no dictionary exists

Compresses all previously existing rows

Any rows inserted or updated afterwards will be compressed

Table/fragment fully accessible to other queries

execute function sysadmin:task|admin(“table

compress”,”table_name”,“database_name”,”owner_name”);

execute function sysadmin:task|admin(“fragment

compress”,“partnum_list”);

Compress command and logging

If the database is logged, a HUPBEF for the source row and a HUPAFT
for the target row will be logged. This is done in-place therefore the
source and target rowid will be the same.

Regardless of database logging, all dictionary table operations are
logged.

Removing compression – uncompress

Uncompress every row in the table/fragment

Deactivate the compression dictionary

Table is fully accessible

execute function sysadmin:task|admin(“table uncompress”,

”table_name”,“database_name”,”owner_name”);

execute function sysadmin:task|admin(“fragment

uncompress”,“partnum_list”);

Removing compression – uncompress_offline

Uncompress every row in the table/fragment

Deactivate the compression dictionary

Table is XLOCKed, no query access

execute function sysadmin:task|admin(“table

uncompress_offline”,”table_name”,“database_name”,”owner_name

”);

execute function sysadmin:task|admin(“fragment

uncompress_offline”,“partnum_list”);

.

Uncompress commands and logging

The “uncompress” commands function by deleting a row and inserting it
back into the table.

If the database is logged, a HDELETE for the source row and a
HINSERT for the target row will be logged.

If the database is logged and the table has one or more indices, a
DELITEM for the source row and a ADDITEM for the target row (for each
index) will be logged.

Regardless of database logging, all dictionary table operations are
logged.

Compress vs uncompress commands

Compress does not need to update indexes and search for or allocate
any space. The rows are compressed directly in their existing slots.

Uncompress has to delete and reinsert every row, which is more
expensive than updating them in-place because:

–it does two write ops per row instead of one

–it has to search for space

–it must update of all indexes for every row processed

Thus uncompress is expected to be more expensive than compress,
and if there are many indexes or a lot of new space must be allocated,
the cost may be much more expensive. Uncompress is the costliest
Compression/SO operation of them all.

Příklad

- komprese začíná
už při create table

- tvorba slovníku
(kdy)

- kompress a
logovaní

- Jak to vypadá po
kompresi

- Insert po
kompresi

time dbaccess pomyk
est

oncheck -pT
pomyk:fr1_2k >
2k.out

oncheck -pT
pomyk:fr1_16k >
16k.out

time dbaccess pomyk
crtd

time dbaccess pomyk
compress

Removing compression – purge_dictionary

Deletes old inactive dictionaries

This is a separate command because ER or CDC
(DataMirror) might need old dictionaries for log records not
yet snooped/replayed

Removing compression – purge_dictionary (cont)

Deletes old inactive dictionary entries for a specified table
name:

execute function sysadmin:task|admin(“table

purge_dictionary”,“database_name”,”table_name”,”owner

_name”);

NOTE: this will fail if the table has been dropped.

Deletes old inactive dictionary entries for a specified
partnum or list of partnums:

execute function sysadmin:task|admin(“fragment

purge_dictionary”,“partnum_list”);

Removing compression – purge_dictionary (cont)

Deletes all old inactive dictionaries:

execute function sysadmin:task|admin(“compression

purge_dictionary”);

Deletes all old inactive dictionaries created prior to the
specified date.

execute function sysadmin:task|admin(“compression

purge_dictionary”,”date”);

Storage optimization – repack

Coalesce all the rows to the front of the partition

Data rows are moved to the available space on data pages in logical
page order

Attached index and partition BLOB pages are not moved

Table/fragment is fully accessible

Table/fragment does not have to be compressed

execute function sysadmin:task|admin(“table repack”,

”table_name”,“database_name”,”owner_name”);

execute function sysadmin:task|admin(“fragment

repack”,“partnum_list”);

Storage optimization – repack_offline

Coalesce all the rows to the front of the partition

Data rows are moved to the available space on data pages in logical
page order

Attached index and partition BLOB pages are not touched

Table/fragment is XLOCKed, no query access

Table/fragment does not have to be compressed

execute function sysadmin:task|admin(“table
repack_offline”,”table_name”,“database_name”,”owner_name”);

execute function sysadmin:task|admin(“fragment
repack_offline”,“partnum_list”);

Storage optimization – repack commands and logging

The “repack” commands function by deleting a row and inserting it back
into the table.

If the database is logged, a HDELETE for the source row and a
HINSERT for the target row will be logged.

If the database is logged and the table has one or more indices, a
DELITEM for the source row and a ADDITEM for the target row (for each
index) will be logged.

Storage optimization – shrink

Return unused space at end of table or fragment back to the dbspace

Cannot shrink first extent smaller than the initial first extent size
specified at table creation

Normally done after a repack

Table/fragment does not have to be compressed

execute function sysadmin:task|admin(“table shrink”,

”table_name”,“database_name”,”owner_name”);

execute function sysadmin:task|admin(“fragment

shrink”,“partnum_list”);

Storage optimization – interoperability

Can be ran individually or with other Storage Optimization or
Compression commands

Possible combinations with the “table” method:

–execute function task|admin(“table compress repack shrink”,
”table_name”,“database_name”,”owner_name”);

–execute function task|admin(“table compress repack”,
”table_name”,“database_name”,”owner_name”);

–execute function task|admin(“table compress shrink”,
”table_name”,“database_name”,”owner_name”);

–execute function task|admin(“table repack shrink”,
”table_name”,“database_name”,”owner_name”);

When run as a single command, the server processes the operations in
this order:

–create_dictionary compress[_offline] repack[_offline] shrink

More on Compression and SO “table” commands

The “table …” commands operate on the specified table_name,
database_name and owner_name

“table_name” is a required parameter

“database_name” and “owner_name” are not required as they will default
to the current database and user informix

On fragmented tables, the “table …” command will process each
fragment serially

More on Compression and SO “fragment” commands

The “fragment …” commands operate on “partnum_list”

“partnum_list” is a space-separated list of one or more partnums

–Example: “0x300002 0x400002”

The “fragment …” command will process each partnum serially in the
order specified

Achieving parallelism with Compression and SO commands

There is no automatic parallelism when operating on fragmented tables

To achieve parallelism, one would need to run a “fragment …” command
on each fragment in concurrent sessions

Example: table with 2 fragments (partnums 0x300002 and 0x400002)

–Session 1: execute function sysadmin:task(“fragment
compress”, “0x300002”);

–Session 2: execute function sysadmin:task(“fragment
compress”, “0x400002”);

Commit interval for Compression and SO commands

To avoid long transactions, compress, uncompress, uncompress_offline,
repack and repack_offline use a commit interval of 100 rows per
transaction in logged databases.

#define COMPRESSION_COMMIT_INTERVAL 100

Altered tables with Compression and Storage Optimization

The “compress” commands will update the each compressed row to be
the newest version if the table has been altered in-place.

The “repack” commands start on the last row of the last page, moving it
to the available space on data pages in logical page order. If the table
has been altered in-place, the moved rows will be of the newest version
provided the target page is also the newest version or has no rows from
the start.

Monitoring in progress compression/SO commands

onstat –g dsk

Partnum OP Processed Cur Page Duration Table

0x00300002 2 128 128 2s compfragtab

0x00000000 1 0 0 1s compfragtab

Translation table for the “OP” column:
–1 create_dictionary

–2 compress

–4 repack

–8 repack_offline

–16 shrink

–32 uncompress

–64 uncompress_offline

–128 estimate_compression

–256 purge_dictionary

“Processed” is the number of rows processed.

“Cur Page” is the current page being worked.

®

© 2009 IBM Corporation

Section 3

OAT’s Graphical Interface for
Compression & Storage Optimization

OAT – Data Compression

 OAT Space Administration Compression

OAT – Data Compression

OAT – Data Compression

OAT – Data Compression

OAT – Data Compression

OAT – Data Compression

OAT – Data Compression

OAT – Data Compression – Fragmented Table

OAT – Data Compression – Fragmented Table

OAT – Data Compression – Estimate

OAT – Compress Operation

OAT – Compress Operation (cont.)

OAT – Uncompression Operation

OAT – Compressing a Fragment (cont.)

